Как найти предел функции не пользуясь правилом лопиталя

Найти пределы функций, не пользуясь правилом Лопиталя

Зависимости координат от времени при движении материальной точки в плоскости

Определить модуль скорость (

А. Модуль скорости материальной точки от времени выражается по формуле:

Б. . Модуль ускорения материальной точки от времени выражается по формуле:

Данные уравнения описывают движение материальной точки с постоянным ускорением

Спутник вращается вокруг земли по круговой орбите на высоте

На спутник, движущийся по круговой орбите, действует сила тяжести

Эту формулу можно упростить следующим образом. На тело массой

Таким образом, линейная скорость спутника равна

а угловая скорость

Рассматриваемые в задаче оба шара образуют замкнутую систему и в случае упругого удара и импульс системы, и механическая (кинетическая) энергия сохраняется. Запишем оба закона сохранения (с учётом неподвижности второго шара до удара):

Таким образом, налетающий (первый) шар в результате удара уменьшил свою скорость с 1,05 м/с до 0,45 м/с, хотя и продолжил движение в прежнем направлении, а ранее неподвижный (второй) шар приобрёл скорость, равную 1,5 м/с и теперь оба шара движутся по одной прямой, и в одном направлении.

Так как масса газа в баллоне меняется, то начальное и конечное состояния газа в баллоне нельзя связывать ни законом Бойля-Мариотта, ни законом Шарля.равнением газа в баллоне меняется, то начальное и конечное состояния газа в баллоне нельзя связывать законом Бойля-Мариотт Нужно для каждого состояния записать уравнение Менделеева-Клапейрона

mirznanii.com

Как найти предел функции не пользуясь правилом лопиталя

Версия системы:
7.47 (16.04.2018)

Общие новости:
13.04.2018, 10:33

Последний вопрос:
26.07.2018, 15:23

Последний ответ:
27.07.2018, 13:48

Последняя рассылка:
28.07.2018, 19:45

РАЗДЕЛ • Математика

Консультации и решение задач по алгебре, геометрии, анализу, дискретной математике.

[администратор рассылки: Лысков Игорь Витальевич (Старший модератор)]

Лучшие эксперты в этом разделе

Здравствуйте! У меня возникли сложности с таким вопросом:

Найти предел функции, не пользуясь правилом Лопиталя

lim (2x+3) [ ln (x+2) — ln x ] (под lim записано «икс стремится к бесконечности»)

В задании было несколько примеров на пределы, но этот поставил в тупик. Не знаю, каким методом его решать. Может, каким-то образом использовать второй замечательный предел, но как (только эта мысль приходит на ум)?

Разрешите в этом же вопросе просто спросить, имеет ли место такая постановка задачи (если имеет, размещу потом как платный вопрос): Применяя формулу Тейлора с остаточным членом в форме Лагранжа к функции, вычислить значение с точностью до 0,001; а = 0,29.
Здесь я не пойму, к какой функции? Она не задана(?), задание звучит именно так, как я записал. Может, самому функцию взять, но какую?

Состояние: Консультация закрыта

Здравствуйте, Aleksandrkib!
Именно 2-ой и нужно использовать! Для начала упростим:
lim (2x+3) [ ln (x+2) — ln x ] = lim (2x+3) ln ((x+2)/x) = lim (2x+3) ln (1+2/x) = lim ln ((1+2/x)^(2x+3)) = lim ln ((1+2/x)^2x)+lim ln ((1+2/x)^3) [второй предел равен нулю, поскольку 2/x стремится к нулю, а ln 1 = 0]
Сделаем замену y = x/2, тогда lim ln ((1+2/x)^2x) = 4 lim ln ((1+1/y)^y) = 4 * ln e =4. Ответ: 4.

Какая-то функция обязательно должна быть.

0

Отправлять сообщения
модераторам могут
только участники портала.
ВОЙТИ НА ПОРТАЛ »
регистрация »

rfpro.ru

Правило Лопиталя: теория и примеры решений

Правило Лопиталя и раскрытие неопределённостей

Раскрытие неопределённостей вида 0/0 или ∞/∞ и некоторых других неопределённостей, возникающих при вычислении предела отношения двух бесконечно малых или бесконечно больших функций значительно упрощается с помощью правила Лопиталя (на самом деле двух правил и замечаний к ним).

Суть правил Лопиталя состоит в том, что в случае, когда вычисление предела отношений двух бесконечно малых или бесконечно больших функций даёт неопределённости видов 0/0 или ∞/∞, предел отношения двух функций можно заменить пределом отношения их производных и, таким образом, получить определённный результат.

Перейдём к формулировкам правил Лопиталя.

Правило Лопиталя для случая предела двух бесконечно малых величин. Если функции f(x) и g(x) дифференцируемы в некоторой окрестности точки a, за исключением, может быть, самой точки a, причём в этой окрестности g‘(x)≠0 и если и если пределы этих функций при стремлении икса к значению функции в точке a равны между собой и равны нулю

(),

то предел отношения этих функций равен пределу отношения их производных

().

Правило Лопиталя для случая предела двух бесконечно больших величин. Если функции f(x) и g(x) дифференцируемы в некоторой окрестности точки a, за исключением, может быть, самой точки a, причём в этой окрестности g‘(x)≠0 и если и если пределы этих функций при стремлении икса к значению функции в точке a равны между собой и равны бесконечности

(),

Иными словами, для неопределённостей вида 0/0 или ∞/∞ предел отношения двух функций равен пределу отношения их производных, если последний существует (конечный или бесконечный).

Замечания.

1. Правила Лопиталя применимы и тогда, когда функции f(x) и g(x) не определены при x = a.

2. Если при вычисления предела отношения производных функций f(x) и g(x) снова приходим к неопределённости вида 0/0 или ∞/∞, то правила Лопиталя следует применять многократно (минимум дважды).

3. Правила Лопиталя применимы и тогда, когда аргумент функций (икс) стремится не к конечному числу a, а к бесконечности (x → ∞).

К неопределённостям видов 0/0 и ∞/∞ могут быть сведены и неопределённости других видов.

Раскрытие неопределённостей видов «ноль делить на ноль» и «бесконечность делить на бесконечность»

Пример 1. Вычислить предел отношения двух функций, пользуясь правилом Лопиталя:

Решение. Подстановка в заданную функцию значения x=2 приводит к неопределённости вида 0/0. Поэтому производную каждой функции и получаем

В числителе вычисляли производную многочлена, а в знаменателе — производную сложной логарифмической функции. Перед последним знаком равенства вычисляли обычный предел, подставляя вместо икса двойку.

Пример 2. Вычислить предел отношения двух функций, пользуясь правилом Лопиталя:

.

Пример 3. Вычислить предел отношения двух функций, пользуясь правилом Лопиталя:

.

Решение. Подстановка в заданную функцию значения x=0 приводит к неопределённости вида 0/0. Поэтому вычисляем производные функций в числителе и знаменателе и получаем:

Пример 4. Вычислить

.

Решение. Подстановка в заданную функцию значения икса, равного плюс бесконечности, приводит к неопределённости вида ∞/∞. Поэтому применим правило Лопиталя:

Замечание. Переходим к примерам, в которых правило Лопиталя приходится применять дважды, то есть приходить к пределу отношений вторых производных, так как предел отношения первых производных представляет собой неопределённость вида 0/0 или ∞/∞.

Пример 5. Вычислить предел отношения двух функций, пользуясь правилом Лопиталя:

.

Здесь правило Лопиталя применено дважды, поскольку и предел отношения функций, и предел отношения производных дают неопределённость вида ∞/∞.

Пример 6. Вычислить

.

Здесь правило Лопиталя применено дважды, поскольку и предел отношения функций, и предел отношения производных дают неопределённость вида 0/0.

Пример 7. Вычислить

.

Здесь правило Лопиталя применено дважды, поскольку и предел отношения функций, и предел отношения производных сначала дают неопределённость вида — ∞/∞, а затем неопределённость вида 0/0.

Пример 8. Вычислить

.

Здесь правило Лопиталя применено дважды, поскольку и предел отношения функций, и предел отношения производных сначала дают неопределённость вида ∞/∞, а затем неопределённость вида 0/0.

Применить правило Лопиталя самостоятельно, а затем посмотреть решение

Пример 9. Вычислить

.

Подсказка. Здесь придётся попыхтеть несколько больше обычного над преобразованием выражений под знаком предела.

Пример 10. Вычислить

.

Подсказка. Здесь правило Лопиталя придётся применять трижды.

Раскрытие неопределённостей вида «ноль умножить на бесконечность»

Пример 11. Вычислить

.

(здесь неопределённость вида 0∙∞ мы преобразовали к виду ∞/∞, так как

а затем применили правила Лопиталя).

Пример 12. Вычислить

.

В этом примере использовано тригонометрическое тождество .

Раскрытие неопределённостей видов «ноль в степени ноль», «бесконечность в степени ноль» и «один в степени бесконечность»

Неопределённости вида , или обычно приводятся к виду 0/0 или ∞/∞ с помощью логарифмирования функции вида

Чтобы вычислить предел выражения , следует использовать логарифмическое тождество , частным случаем которого является и свойство логарифма .

Используя логарифмическое тождество и свойство непрерывности функции (для перехода за знак предела), предел следует вычислять следующим образом:

Отдельно следует находить предел выражения в показателе степени и возводить e в найденную степень.

Пример 13. Вычислить, пользуясь правилом Лопиталя

.

.

.

Пример 14. Вычислить, пользуясь правилом Лопиталя

.

.

.

Пример 15. Вычислить, пользуясь правилом Лопиталя

.

Вычисляем предел выражения в показателе степени

.

Раскрытие неопределённостей вида «бесконечность минус бесконечность»

Это случаи, когда вычисление предела разности функций приводит к неопределённости «бесконечность минус бесконечность»: .

Вычисление такого предела по правилу Лопиталя в общем виде выглядит следующим образом:

В результате таких преобразований часто получаются сложные выражения, поэтому целесообразно использовать такие преобразования разности функций, как приведение к общему знаменателю, умножение и деление на одно и то же число, использование тригонометрических тождеств и т.д.

Пример 16. Вычислить, пользуясь правилом Лопиталя

.

Решение. Пользуясь вышеперечисленными рекомендациями, получаем

Пример 17. Вычислить, пользуясь правилом Лопиталя

.

function-x.ru

Вычислить пределы применяя правило лопиталя

Неопределённость тоже не сопротивляется превращению в или :

Правила Лопиталя

Продолжаем разрабатывать тему, которую нам подкинул член Парижской академии наук маркиз Гийом Франсуа де Лопиталь. Статья приобретает ярко выраженную практическую окраску и в достаточно распространённом задании требуется:

Чтобы не мельчить, вычислим предел показателя отдельно:

Очередной папуас тоже сдаётся перед формулой . В данном случае :

Правила Лопиталя – очень мощный метод, позволяющий быстро и эффективно устранить указанные неопределенности, не случайно в сборниках задач, на контрольных работах, зачётах часто встречается устойчивый штамп: «вычислить предел, не пользуясь правилом Лопиталя». Выделенное жирным шрифтом требование можно с чистой совестью приписать и к любому пределу уроков Пределы. Примеры решений, Замечательные пределы. Методы решения пределов, Замечательные эквивалентности, где встречается неопределённость «ноль на ноль» либо «бесконечность на бесконечность». Даже если задание сформулировано коротко – «вычислить пределы», то негласно подразумевается, что вы будете пользоваться всем, чем угодно, но только не правилами Лопиталя.

Метаморфозы продолжаются, теперь вылезла неопределённость «ноль на ноль». В принципе, можно избавиться от косинуса, указав, что он стремится к единице. Но мудрая стратегия заключается в том, чтобы никто ни до чего не докопался. Поэтому сразу применим правило Лопиталя, как этого требует условие задачи:

Аналогичное задание для самостоятельного решения:

Как видите, дифференцирование числителя и знаменателя привело нас к ответу с пол оборота: нашли две простые производные, подставили в них «двойку», и оказалось, что неопределённость бесследно исчезла!

Вычислить предел функции с помощью правила Лопиталя

В свою очередь на огонёк подтягиваются собутыльники и более экзотические товарищи . Метод трансформации прост и стандартен:

Рассмотренный пример разруливается и через замечательные пределы, похожий случай разобран в конце статьи Сложные пределы.

Сразу оговорюсь, что правила будут приведены в лаконичном «практическом» виде, и если вам предстоит сдавать теорию, рекомендую обратиться к учебнику за более строгими выкладками.

6) Применим последнее правило сведения к второй замечательной границы

Раскрытие неопределенностей сводится предварительно рассмотренным выше неопределенностей. Если , а при , то применяем преобразование

бесконечность или ноль на ноль является применение правила Лопиталя: предел отношения двух

В случае трех последних неопределенностей нужно применять преобразования

5) Есть неопределенность вида бесконечность на бесконечность .

бесконечно малых или двух бесконечно больших функций равен пределу отношения их производных,

3) Учитывая неопределенность применяем предыдущее правило

Вычисление пределов по правилу Лопиталя

Эффективным способом вычисления пределов функций, имеющих особенности типа бесконечность на

Решение. 1) Подстановкой устанавливаем что имеем неопределенность вида ноль на ноль . Для избавления от

Опять получили неопределенность вида и повторно применяем правило Лопиталя

2) Как и в предыдущем примере мы имеем неопределенность . По правилу Лопиталя находим

Применение правила Лопиталя показало все возможности при раскрытии неопределенностей.

Число выбрано таким образом, чтобы выполнялось равенство (1) и, следовательно, . Таким образом, для функции на промежутке

В окрестности точки x0, т.е. на (x0,х) для функций f(x) и g(x) выполняются условия теоремы Коши. Следовательно, существует точка сÎ(x0, х) такая, что

Правило Лопиталя

Однако, возможна ситуация, когда функция будет иметь экстремум в точке x0 в том случае, когда производная не существует.

Пусть функция n раз дифференцируема в окрестности точки x0.Найдем многочлен степени не выше n-1, такой что

Пусть функции f(x) и g(x) непрерывны и дифференцируемы в некоторой окрестности точки x0, за исключением самой точки x0, причем . Пусть , . Тогда если существует предел отношения производных функций , то существует предел отношения самих функций , причем они равны между собой, т.е. .

Вывод: показательная функция (y=a n ) всегда растет быстрее, чем степенная (у=x n ).

В качестве примера приложения формулы Маклорена, определим количество членов в разложении функции по указанной формуле для вычисления ее значения с точностью до 0.001 при любом x из промежутка [-1,1].

Определение: Функция называется неубывающей (невозрастающей) на (a;b), если для любых x1 Posted in Полезные статьи

o-v-m.ru

Нахождение предела функции в точке по правилу Лопиталя

Нахождение предела функции, по правилу Лопиталя, раскрывающий неопределённости вида 0/0 и ∞/∞.

Калькулятор ниже находит предел функции по правилу Лопиталя (через производные числителя и знаменателя). Описание правила смотри ниже.

Предел функции в точке — правило Лопиталя

Допустимые операции: + — / * ^ Константы: pi Функции: sin cosec cos tg ctg sech sec arcsin arccosec arccos arctg arcctg arcsec exp lb lg ln versin vercos haversin exsec excsc sqrt sh ch th cth csch

Точка в которой необходимо посчитать предел

Правило Лопиталя

Если выполняются следующие условия:

  • пределы функций f(x) и g(x) равны между собой и равны нулю или бесконечности:
    или ;
  • функции g(x) и f(x) дифференцируемы в проколотой окрестности a;
  • производная функции g(x) не равна нулю в проколотой окрестности a
  • и существует предел отношения производной f(x) к производной g(x):

Тогда существует предел отношения функций f(x) и g(x):
,

И он равен пределу отношения производной функции f(x) к производной функции g(x):

В формуле допускается использование числа пи (pi), экспоненты (e), следующих математических операторов:

+ — сложение
— вычитание
* — умножение
/ — деление
^ — возведение в степень

и следующих функций:

  • sqrt — квадратный корень
  • rootp — корень степени p, например root3(x) — кубический корень
  • exp — e в указанной степени
  • lb — логарифм по основанию 2
  • lg — логарифм по основанию 10
  • ln — натуральный логарифм (по основанию e)
  • logp — логарифм по основанию p, например log7(x) — логарифм по основанию 7
  • sin — синус
  • cos — косинус
  • tg — тангенс
  • ctg — котангенс
  • sec — секанс
  • cosec — косеканс
  • arcsin — арксинус
  • arccos — арккосинус
  • arctg — арктангенс
  • arcctg — арккотангенс
  • arcsec — арксеканс
  • arccosec — арккосеканс
  • versin — версинус
  • vercos — коверсинус
  • haversin — гаверсинус
  • exsec — экссеканс
  • excsc — экскосеканс
  • sh — гиперболический синус
  • ch — гиперболический косинус
  • th — гиперболический тангенс
  • cth — гиперболический котангенс
  • sech — гиперболический секанс
  • csch — гиперболический косеканс
  • abs — абсолютное значение (модуль)
  • sgn — сигнум (знак)
  • planetcalc.ru

    Смотрите так же: