Наследование генетические заболевания

Наследование генетические заболевания

1. Закажите ДНК Набор по тел 88005502413 2. Соберите ДНК образцы у животного. 3.Отравьте в наш ДНК центр 4. Получите результат!

Анализ ДНК у собак. Наследственно-генетические заболевания животных.

Здоровье питомца всегда волнует его владельца. Оно зависит от целого ряда условий. И если большинство параметров, влияющих на хорошее самочувствие собаки, зависят от владельца (правильный рацион, адекватные физические нагрузки и т.п.), то на состояние генетического здоровья приобретённого животного хозяин повлиять не может.

Для чего и когда необходимо делать анализ на наследственные заболевания?

Существует две основные причины для проведения этого исследования:

1. Проведенный перед покупкой собаки анализ ДНК позволит убедиться, что собака абсолютно здорова, и в будущем владельца не ожидают неприятные сюрпризы в виде какого-либо заболевания (например, прогрессирующая атрофия сетчатки глаза может проявляться со второго года жизни питомца).
2. Собака может прожить абсолютно здоровую жизнь, но быть переносчиком генетического заболевания, которое проявиться у её потомства. Поэтому если Вы приобретает собаку с планами получить от неё щенков на продажу, важно убедиться, что у Вас не возникнет с ними проблем в будущем.

Покупая породистое животное, порядочный заводчик вместе с родословной предоставляет будущим владельцам его ветеринарный ДНК паспорт. На момент продажи в паспорте стоят отметки про проведение прививок и дегельминтизации.

Но, покупая очень дорогое животное от элитных производителей, будущий владелец имеет право убедиться, что этот щенок действительно получен от указанных родителей, и он не имеет никаких генетических заболеваний. Вся эта информация может быть получена с помощью проведения исследования ДНК животного на установление родства и занесена в ветеринарный паспорт животного.

Разведением породных животных занимается далеко не каждый. Заводчики, как правило, преследуют две цели в разведении:

• они любят животных, и общение с ними приносит им моральное удовлетворение;
• это является основным или дополнительным источником их дохода.

Но в разведении есть и свои подводные камни. Когда животные начинают болеть, это обходится совсем недешево для их владельцев. А если болеют проданные ими щенки, это негативно сказывается на репутации питомника.

Большинство наследственных заболеваний собак имеют аутосомно-рецессивный тип наследования. При этом родители могут быть абсолютно здоровыми переносчиками. А щенки, полученные от вязки таких собак, будут иметь проявленное заболевание. Очень большую роль в распространении заболеваний, присущим определенным породам, играет инбридинг. (Улучшение породных качеств путём скрещивания собак, находящихся в родстве даёт возможность закрепить определённые породные данные, но при этом увеличивает риск передачи и проявления наследственных заболеваний у потомства.)

Учитывая, что репутация питомника напрямую влияет на доход его владельца, логично сделать вывод, что своевременная проверка собаки на генетические заболевания поможет избежать многих проблем. Генетическое тестирование – это инструмент, существенно помогающий заводчику в проведении грамотной селекционной работы.

В качестве образцов биоматериала для проведения генетических исследований чаще всего используется сухая кровь либо защечный эпителий (внутренней стороны щеки). Подготовка сухой крови, как правило, выполняется квалифицированным персоналом. Самостоятельно заводчики отсылают буккальный эпителий. Перед взятием образцов животное не рекомендуют кормить в течение двух-трёх часов. При взятии материала у щенков необходимо исключить возможность нахождения в ротовой полости остатков молока (не кормить их как минимум два часа, перед взятием анализа промыть ротовую полость водой со шприца). Также необходимо оградить животное от контактов с другими своими питомцами. Процедура взятия анализа достаточно проста:

• Одной рукой фиксируется голова животного, а второй берётся ватная палочка и просовывается в пространство между десной и внутренней стороной щеки;
• В течение 10 секунд палочку необходимо прокручивать, придавливая к щеке, чтобы собрать эпителий (при этом необходимо стараться, чтобы на неё попало как можно меньше слюны, и чтобы второй конец палочки не дотрагивался до рук и других предметов);
• Поместить палочку в белый бумажный конверт;
• Повторить процедуру ещё с тремя палочками.

К отсылаемому биоматериалу необходимо приложить заполненный бланк на генетическое исследование и копию родословной.

Генетические исследования собак – мощный механизм, позволяющий обезопасить владельцев от непредвиденных волнений по поводу здоровья своих питомцев и расходов на их лечение.

Стоимость анализа на установление родства у собак.
1 особь — 4500 руб
Образец: буккальные эпителий или кровь
Сроки : 5-7 раб.дней

dnk.center

Доминантное наследование

Наша команда профессионалов ответит на ваши вопросы

Данная брошюра содержит информацию о том, что такое доминантный тип наследования и каким образом наследуются доминантные заболевания. Для того, чтобы лучше понять особенности доминантного наследования, вначале будет полезно узнать, что такое гены и хромосомы.

Гены и хромосомы

Наше тело состоит из миллионов клеток. Большинство клеток содержат полный набор генов. У человека тысячи генов. Гены можно сравнить с инструкциями, которые используются для контроля роста и согласованной работы всего организма. Гены отвечают за множество признаков нашего организма, например, за цвет глаз, группу крови или рост.

Гены расположены на нитевидных структурах, называемых хромосомами. В норме, в большинстве клеток организма содержится по 46 хромосом. Хромосомы передаются нам от родителей – 23 от мамы, и 23 от папы, поэтому мы похожи на своих родителей. Таким образом, у нас два набора по 23 хромосомы, или 23 пары хромосом. Так как на хромосомах расположены гены, мы наследуем по две копии каждого гена, по одной копии от каждого из родителей. Хромосомы (следовательно, и гены) состоят из химического соединения, называемого ДНК.

Иногда в одной копии гена возникает изменение (мутация), которое нарушает нормальную работу гена. Такая мутация может привести к развитию генетического (наследственного) заболевания, так как измененный ген не выполняет нужную для организма функцию.

Рисунок 1: Гены, хромосомы и ДНК

Что такое аутосомно-доминантное наследование?

Некоторые заболевания передаются в семье из поколения в поколение по доминантному типу. Это означает, что человек наследует одну нормальную и одну измененную копии гена. Однако измененная копия доминирует, «подавляет» нормальную копию. Это приводит к тому, что у человека развивается генетическое заболевание. От того, какая информация закодирована в измененном гене, зависят проявления заболевания.

Некоторые доминантные генетические заболевания проявляются сразу после рождения. Другие могут проявиться только во взрослом возрасте, такие заболевания называют «заболевания с поздним дебютом», или «с поздней манифестацией». Примерами таких заболеваний являются поликистозная болезнь почек у взрослых и хорея Гентингтона.

Каким образом наследуются доминантные заболевания?

Рисунок 2: Как доминантные заболевания передаются от родителя к ребенку

Если у одного из родителей присутствует измененная копия гена, то он может передать ребенку либо нормальную копию, либо измененную. Таким образом, каждый из детей такого родителя будет иметь вероятность 50% наследования измененной копии и, следовательно, иметь генетическое заболевание.

В то же время, каждый из детей имеет такой же шанс – 50% — получить от родителя нормальную копию гена. В этом случае ребенок не будет болен этим наследственным заболеванием и не сможет передать измененные копии никому из своих будущих детей.

Оба возможных варианта (исхода) происходят случайным образом. Процент риска остается одним и тем же при каждой беременности и одинаков как для мальчиков, так и для девочек.

Почему иногда кажется, что заболевание передалось через поколение?

Некоторые доминантные наследственные заболевания могут проявляться у разных членов семьи очень по-разному. Это называется «вариабельная экспрессивность». На самом деле, доминантное заболевание присутствует в каждом поколении, но у некоторых людей проявления заболевания настолько незначительны, что они считают себя здоровыми. Они могут даже не знать о наличии у них заболевания.

При заболеваниях с поздним началом (проявляющимся уже во взрослом возрасте, например, наследственная форма рака груди или хорея Гентингтона) люди могут умереть раньше начала манифестации наследственного заболевания от совсем других причин, и наследственное заболевание не успевает проявить себя. Однако родители могли передать заболевание своим детям.

Что происходит в том случае, если пациент является первым в семье, у кого выявлено данное заболевание?

Иногда пациент с доминантным заболеванием может оказаться первым больным в семье. Это может объясняться тем, что в сперматозоиде или яйцеклетке, из которых развился данный ребенок, произошла новая мутация (изменение) в гене, впервые в поколениях семьи. Если такое происходит, то родители этого пациента здоровы. В этом случае вероятность рождения у этих родителей другого ребенка с таким же заболеванием очень мала, однако этот вопрос обязательно следует обсудить с врачом. Однако, больной ребенок (как сын, так и дочь), у которого появился измененный ген, в будущем может передать его своим детям.

Тесты во время беременности

Для некоторых доминантных генетических заболеваний возможно проведение теста во время беременности, который позволит выявить, унаследовал ли ребенок заболевание (более подробная информация об этих тестах приведена в брошюрах «Биопсия ворсин хориона» и «Амниоцентез»).

Другие члены семьи

Если у кого-либо в семье есть доминантное заболевание, возможно, Вы будете обсуждать это с другими членами семьи. Эта информация может помочь другим членам семьи для решения вопроса об обследовании и диагностике заболевания. Это может быть особенно важно для тех членов семьи, у которых уже есть или будут дети.

Некоторым людям может оказаться сложно обсуждать свое генетическое заболевание с другими членам семьи. Они могут бояться причинить беспокойство членам семьи. В некоторых семьях люди из-за этого испытывают сложности в общении и теряют взаимопонимание с родственниками. Врачи-генетики, как правило, имеют большой опыт в решении подобных семейных ситуаций и могут помочь Вам в обсуждении проблемы с другими членами семьи.

www.dnalab.ru

НАСЛЕДСТВЕННЫЕ БОЛЕЗНИ

НАСЛЕДСТВЕННЫЕ БОЛЕЗНИ — заболевания человека, обусловленные хромосомными и генными мутациями. Нередко термины «наследственная болезнь» и «врожденная болезнь» употребляются как синонимы, однако врожденные болезни (см.) — это заболевания, имеющиеся при рождении ребенка, они могут быть обусловлены как наследственными, так и экзогенными факторами (напр., пороки развития, связанные с воздействием на эмбрион радиации, хим. соединений и лекарственных средств, а также внутриутробных инфекций).

Н. б. и врожденные пороки развития являются причиной госпитализации детей почти в 30% случаев, а с учетом болезней неизвестной природы, к-рые в значительной степени могут быть связаны с генетическими факторами, этот процент еще выше. Однако далеко не все Н. б. относят к врожденным, поскольку многие из них проявляются после периода новорожденности (напр., хорея Гентингтона развивается после 40 лет). В качестве синонима термина «наследственные болезни» не следует также рассматривать термин «семейные болезни», т. к. семейные заболевания могут быть обусловлены не только наследственными факторами, но и условиями жизни или профессиональными традициями семьи.

Н. б. известны человечеству с давних времен. Клин, изучение их началось в конце 18 в. В 1866 г. В. М. Флоринский в книге «Усовершенствование и вырождение человеческого рода» дал правильную оценку значения окружающей среды в формировании наследственных признаков, вредного влияния на потомство близко-родственных браков, описал наследование ряда патол, признаков (глухонемоты, пигментного ретинита, альбинизма, заячьей губы и др.). Англ. биолог Гальтон (F. Galton) первый поставил вопрос о наследственности человека как предмете научного изучения. Он обосновал генеалогический метод (см.) и близнецовый метод (см.) для изучения роли наследственности (см.) и окружающей среды в развитии и становлении признаков. В 1908 г. англ. врач Гар-род (A. E. Garrod) впервые сформулировал концепцию о наследственных «ошибках» обмена веществ, подойдя таким образом к изучению молекулярных основ ряда Н. б.

В СССР большую роль в развитии учения о Н. б. человека сыграл Московский медико-биологический ин-т им. М. Горького (позднее — Медико-генетический ин-т), к-рый функционировал с 1932 по 1937 г. В этом ин-те проводились цитогенетические исследования и изучались болезни с наследственным предрасположением (сахарный диабет, язвенная болезнь желудка и двенадцатиперстной кишки, аллергия, гипертоническая болезнь и др.). Советский невропатолог и генетик С. Н. Давиденков (1934) впервые установил существование генетической гетерогенности Н. б. и причин их клин, полиморфизма. Он разработал основы нового вида медпомощи — медико-генетического консультирования (см. Медико-генетическая консультация).

Открытие материального носителя наследственности — ДНК, механизмов кодирования (см. Генетический код) позволило понять значение мутаций в развитии Н. б. Л. Полинг ввел понятие «молекулярные болезни», т. е. болезни, обусловленные нарушением последовательности аминокислот в полипептидной цепи. Введение в клинику методов разделения смеси белков, в т. ч. и ферментов, идентификации продуктов биохим, реакций, успехи цитогенетики, возможность картирования хромосом (см. Хромосомная карта) позволили выяснить природу ряда Н. б. Общее число известных Н. б. к 70-м гг. 20 в. достигло 2 тыс.

В зависимости от соотношения роли наследственных и экзогенных факторов в этиологии и патогенезе различных заболеваний Н. П. Бочков предложил все болезни человека условно разделить на четыре группы.

Первая группа болезней человека — это Н. б., при к-рых проявление патол, [[МУТАЦИИ|мутации]] (см.) как этиол, фактора практически не зависит от окружающей среды, к-рая в этом случае определяет лишь выраженность симптомов болезни. К заболеваниям этой группы относятся все хромосомные болезни (см.) и генные Н. б. с полным проявлением, напр, болезнь Дауна, Фенилкетонурия, гемофилия, гликозидозы и др.

Во второй группе болезней наследственные изменения также являются этиол, фактором, однако для проявления мутантных генов (см. Пенетрантность гена) необходимо соответствующее влияние окружающей среды. К таким заболеваниям относят подагру, нек-рые формы сахарного диабета, гиперлипопротеине-мий (см. Липопротеиды). Подобные заболевания чаще проявляются при постоянном воздействии неблагоприятных или вредных факторов окружающей среды (физическое или умственное переутомление, нарушение режима питания и др.). Эти болезни можно отнести к группе болезней с наследственным предрасположением; для одних из них окружающая среда имеет большее, для других — меньшее значение.

В третьей группе болезней этиол, фактором является окружающая среда, однако частота возникновения болезней и тяжесть их течения зависят от наследственного предрасположения. К заболеваниям этой группы относятся гипертоническая болезнь и атеросклероз, язвенная болезнь желудка и двенадцатиперстной кишки, аллергические заболевания, многие пороки развития, определенные формы ожирения.

Четвертая группа болезней связана исключительно с воздействием неблагоприятных или вредных факторов окружающей среды, наследственность в их возникновении практически не играет никакой роли. К этой группе относят травмы, ожоги, острые инф. болезни. Однако генетические факторы могут оказать определенное влияние на течение патол, процесса, т. е. на темпы выздоровления, переход острых процессов в хронические, развитие декомпенсации функций пораженных органов.

Робертс (Roberts) и соавт. (1970) подсчитали, что среди причин детской смертности генетические компоненты болезни определяются в 42% случаев, в т. ч. 11% детей умирают от собственно Н. б. и 31% — от приобретенных заболеваний, развившихся на неблагоприятном наследственном фоне.

Известные к 70-м гг. 20 в. Н. б. подразделяют на три основные группы.

1. Моногенные болезни: а) по типу наследования — аутосомно-доми-нантные, аутосомно-рецессивные, сцепленные с полом; по фенотипическому проявлению — энзимопатий (болезни обмена веществ), в т. ч. болезни, обусловленные нарушением репарации ДНК, болезни, обусловленные патологией структурных белков, иммунопатология, в т. ч. нарушения в системе комплемента, нарушения синтеза транспортных белков, в т. ч. белков крови (гемоглобинопатии, болезнь Вильсона, атрансферринемия), патология свертывающей системы крови, патология переноса веществ через клеточные мембраны, нарушения синтеза пептидных гормонов.

2. Полигенные (мультифакториаль-ные) болезни или болезни с наследственным предрасположением.

3. Хромосомные болезни: полиплоидии, анеуплоидии, структурные перестройки хромосом.

Моногенные болезни наследуются в полном соответствии с законами Менделя (см. Менделя законы). Большинство известных Н. б. обусловлено мутацией структурных генов; возможность этиол, роли мутаций генов-регуляторов при нек-рых заболеваниях пока доказана лишь косвенно.

Аутосомно-доминантный тип наследования (см.) характерен для Н. б., в основе к-рых лежит нарушение синтеза структурных белков пли белков, выполняющих специфические функции (напр., гемоглобина). При этом тине наследования действие мутантного гена проявляется практически всегда. Больные мальчики и девочки рождаются с одинаковой частотой. Вероятность развития болезни в потомстве составляет 50%. Один из родителей больного ребенка обязательно болен. По аутосомно-доминантному типу наследуются Альпорта синдром (см.), Марфана синдром (см.), болезнь Олбрайта (см. Псевдогипопаратиреоз), геморрагическая телеаигиэктазия Ослера (см. Ослера — Рандю болезнь), гемохроматоз (см.), гипербилирубинемия, синдром Жильбера — Мейленграхта, синдром Дубина — Джонсона (см. Гепатозы), дизостозы (см.), Элерса — Данлоса синдром (см. Десмогенез несовершенный), нейрофиброматоз (см.), отосклероз (см.), пароксизмальная миоплегия (см.), талассемия (см.), туберозный склероз (см.), болезнь Стерджа (Штурге) — Вебера (см. Энцефалотригеминальный ангиоматоз), эллиптоцитоз (см. Гемолитическая анемия) и др.

При аутосомно-рецессивном типе наследования мутантный ген проявляется только в гомозиготном состоянии. Больные мальчики и девочки рождаются с одинаковой частотой. Вероятность рождения больного ребенка составляет 25%. Родители больных детей могут быть фенотипически здоровы, но являются гетерозиготными носителями мутантного гена. Аутосомно-рецессивный тип наследования более характерен для заболеваний, при к-рых нарушена функция какого-либо фермента (или каких-либо ферментов),— так наз. энзимопатий (см.).

Рецессивное наследование, сцепленное с X-хромосомой, заключается в том, что действие мутантного гена проявляется только при XY-наборе половых хромосом, т. е. у мальчиков. Вероятность рождения больного мальчика у матери — носительницы мутантного гена — составляет 50%. Девочки практически здоровы, но половина из них является носительницами мутантного гена (так наз. кондукторы). Родители здоровы. Часто болезнь обнаруживается у сыновей сестер пробанда или его двоюродных братьев по материнской линии. Больной отец не передает болезнь сыновьям. Этот тип наследования характерен для прогрессирующей мышечной дистрофии типа Дюшенна (см. Миопатия), гемофилии А и В (см. Гемофилия), синдрома Леша—Найхана (см. Подагра), болезни Гунтера (см. Гаргоилизм), Фабри болезни (см.), генетически обусловленной недостаточности глюкозо-6-фосфат-дегидрогеназы (нек-рые формы).

Доминантное наследование, сцепленное с X-хромосомой, заключается в том, что действие доминантного мутантного гена проявляется в любом наборе половых хромосом (XX, XY, Х0 и т. п.). Проявление заболевания не зависит от пола, однако более тяжело протекает у мальчиков. Среди детей больного мужчины в случае такого типа наследования все сыновья здоровы, все дочери поражены. Больные женщины передают измененный ген половине сыновей и дочерей. Данный тип наследования прослеживается при фосфат-диабете.

По фенотипическому проявлению к моногенным Н. б. относятся энзимопатий, к-рые составляют наиболее обширную и лучше всего изученную группу Н. б. Первичный дефект фермента расшифрован примерно при 150 энзымопатиях. Возможны следующие причины энзимопатий: а) фермент не синтезируется совсем; б) в молекуле фермента нарушена последовательность аминокислот, т. е. изменена его первичная структура; в) отсутствует или неправильно синтезируется кофермент соответствующего фермента; г) активность фермента изменена в связи с аномалиями в других ферментных системах; д) блокада фермента обусловлена генетически детерминированным синтезом веществ, инактивирующих фермент. Энзимопатий в большинстве случаев наследуются по аутосомно-рецессивному типу.

Мутация гена может повлечь за собой нарушение синтеза белков, выполняющих пластические (структурные) функции. Нарушение синтеза структурных белков — вероятная причина таких заболеваний, как остеодисплазии (см.) и остеогенез несовершенный (см.), синдром Элерса — Данлоса. Есть данные об определенной роли этих нарушений в патогенезе наследственных нефритоподобных заболеваний — синдрома Альпорта и семейной гематурии. В результате аномалий в структуре белков базальных, а также цитоплазматических мембран развивается тканевая гипопластическая дисплазия — гистологически обнаруживаемая незрелость тканевых структур. Можно допустить, что дисплазия ткани может выявляться не только в почках, но и в любых других органах. Патология структурных белков характерна для большинства Н. б., наследуемых по аутосомно-доминантному типу.

В стадии изучения находятся заболевания, в основе к-рых лежит недостаточность механизмов восстановления измененной молекулы ДНК. Нарушение механизмов репарации ДНК установлено при ксеродерме пигментной (см.), синдроме Блума (см. Пойкилодермия) и синдроме Коккейна (см. Ихтиоз), атаксии-телеангиэктазии (см. Атаксия), Дауна болезни (см.), анемии Фанкони (см. Гипопластическая анемия), системной красной волчанке (см.).

Генная мутация может привести к развитию иммунодефицитных болезней (см. Иммунологическая недостаточность). В наиболее тяжелых формах протекает агаммаглобулинемия (см.), особенно в сочетании с аплазией вилочковой железы. В 1949 г. Л. Полинг и сотр. установили, что причиной аномальной структуры гемоглобина при серповидноклеточной анемии (см.) является замена в молекуле гемоглобина остатка глутаминовой к-ты на остаток валина. Позднее было установлено, что эта замена явилась результатом генной мутации. Это послужило началом интенсивных исследований гемоглобинопатий (см.).

Известен ряд мутаций генов, контролирующих синтез факторов свертывания крови (см. Свертывающая система крови). Генетически детерминированные нарушения синтеза антигемофильного глобулина (VIII фактор) приводят к развитию гемофилии А. При нарушении синтеза тромбопластического компонента (фактор IX) развивается гемофилия В. Недостаток предшественника тромбопластина лежит в основе патогенеза гемофилии С.

Генные мутации могут быть причиной нарушения транспорта различных соединений (органические соединения, ионы) через клеточные мембраны. Наиболее изучены наследственная патология транспорта аминокислот в кишечнике и почках, синдром мальабсорбции глюкозы и галактозы, изучаются последствия нарушения калий-натриевого «насоса» клетки. Примером заболевания, вызванного наследственным дефектом транспорта аминокислот, является Цистинурия (см.), клинически проявляющаяся нефролитпазом и признаками пиелонефрита. Классическая Цистинурия обусловлена нарушением транспорта ряда диамгшокарбоновых к-т (аргинина, лизина) и цистина через клеточные мембраны как в кишечнике, так и в почках, и встречается реже гиперцистинурии, к-рая характеризуется только нарушением переноса цистина через клеточные мембраны в почках, при этом нефро-литиаз развивается редко. Этим объясняются кажущиеся противоречия литературных данных о частоте гиперцистинурии как биохим, признака и цистинурии как болезни.

Патология реабсорбции глюкозы в почечных канальцах — почечная глюкозурия связана с нарушением функции мембранных бел ков-переносчиков или с дефектами в системе обеспечения энергией процессов активного транспорта глюкозы; наследуется по аутосомно-доминантному типу. Нарушение реабсорбции бикарбонатов в проксимальных отделах нефрона или нарушение секреции водородных ионов клетками почечного эпителия дистальных отделов нефрона лежит в основе двух типов почечного канальцевого ацидоза (см. Лайтвуда—Олбрайта синдром).

Муковисцидоз также может быть отнесен к заболеваниям, в патогенезе к-рых существенную роль играет нарушение трансмембранного переноса и секреторной функции экзо-кринных желез. Известны заболевания, при к-рых нарушена функция мембранных механизмов, ответственных за поддержание нормального градиента концентраций ионов К + и Mg 2+ внутри и вне клетки, что клинически проявляется периодическими приступами тетании.

Полигенные (мультифакториальные) болезни или болезни с наследственным предрасположением обусловлены взаимодействием нескольких или многих генов (полигенные системы) и факторов окружающей среды. Патогенез болезней с наследствен-ным предрасположением, несмотря на их распространенность, изучен недостаточно. Отклонения от нормальных вариантов строения структурных, защитных и ферментных белков могут определять существование многочисленных диатезов в детском возрасте. Большое значение имеет поиск фенотипических маркеров наследственной предрасположенности к определенному заболеванию; напр., аллергический диатез может быть диагностирован на основании повышенного содержания в крови иммуноглобулина E и повышенной экскреции минорных метаболитов триптофана с мочой. Определены биохим, маркеры наследственной предрасположенности к сахарному диабету (тест на толерантность к глюкозе, определение иммунореактивного инсулина) , конституционально-экзогенному ожирению, гипертонической болезни (гиперлипопротеинемия). Достигнуты успехи в изучении взаимосвязи между группами крови AB0 (см. Группоспецифические вещества), системой гаптоглобина, антигенами HLA и болезнями. Установлено, что для лиц с тканевым гаплотипом HLA-B8 высок риск заболевания хрон, гепатитом, целиакией и миастенией; для лиц с гаплотипом HLA-A2 — хрон. гломерулонефритом, лейкозом; для лиц с гаплотипом HLA-DW4 — ревматоидным артритом, для лиц с гаплотипом HLA-A1 — атопической аллергией. Связь с системой гистосовместимости HLA обнаружена примерно для 90 заболеваний человека, многие из к-рых характеризуются иммунными нарушениями.

Хромосомные болезни подразделяются на аномалии, обусловленные изменениями количества хромосом (полиплоидии, анеуплоидии) или структурными перестройками хромосом — делеции (см.), инверсии (см.), транслокации (см.), дупликации (см.). Хромосомные мутации, возникшие в зародышевых клетках (гаметах), проявляются в так наз. полных формах. Нерасхождение хромосом и структурные изменения, развившиеся на ранних стадиях дробления зиготы, ведут к развитию мозаицизма (см.).

Риск повторного проявления большинства хромосомных болезней в семье не превышает 1 %. Исключение составляют синдромы транслокации, при к-рых величина повторного риска достигает 30% и более. Вероятность появления хромосомных аберраций резко увеличивается у женщин старше 35 лет.

Клин, классификация Н. б. построена по органному и системному принципу и не отличается от классификации приобретенных болезней. Согласно этой классификации выделяют Н. б. нервной и эндокринной систем, легких, сердечно-сосудистой системы, печени, жел.-киш. тракта, почек, систвхмы крови, кожи, уха, носа, глаз и др. Такая классификация условна, т. к. большинство Н. б. характеризуется вовлечением в патол, процесс нескольких органов или системным поражением тканей.

Частота моногенных Н. б. колеблется у разных этнических групп населения в разных географических зонах. Это отчетливо прослеживается на примере концентрации серповидно-клеточной анемии и талассемии в географических регионах с высокой подверженностью населения заболеванию малярией. Распространенность болезней с наследственным предрасположением в значительной степени определяет балансированный полиморфизм (см.). С этим явлением может быть также связана концентрация ряда моногенных Н. б. (Фенилкетонурия, муковисцидоз, гемоглобинопатии и др.). Особенности географического распределения Н. б. зависят также от дрейфа генов и эффекта родоначальника. В течение всего лишь 200 лет в Южной Африке таким путем распространились гены порфирии. Концентрация мутантных генов на ограниченных территориях связана с частотой кровнородственных браков, особенно высокой в изолятах (см.).

В Западной Европе и в СССР наиболее распространенными Н. б. обмена являются муковисцидоз (см.) — 1 : 1200 — 1 : 5000; Фенилкетонурия (см.) — 1 : 12000 — 1 : 15000; галактоземия (см.) — 1 : 20000 — 1 : 40000; Цистинурия— 1 : 14000; гистидинемия (см.) — 1 : 17000. Частота гиперлипопротеинемий (включая полигенно наследуемые формы) достигает 1 : 100 — 1 : 200. К часто встречающимся Н. б. обмена следует отнести гипотиреоз (см.) — 1 : 7000; мальабсорбции синдром (см.) — 1 : 3000; адреногенитальный синдром (см.) — 1 : 5000 — 1 : 11000, гемофилию — 1 : 10000 (болеют мальчики).

Такие заболевания, как лейциноз, гомоцистинурия, встречаются относительно редко, их частота 1 : 200 000 — 1 : 220 000. Частота значительного числа Н. б. обмена по чисто техническим ограничениям (отсутствие экспресс-методов диагностики, сложность аналитических исследований для подтверждения диагноза) не установлена, хотя это не свидетельствует об их редкости.

Болезни с наследственным предрасположен ием также имеют особенности распространения в разных странах. Так, по данным Шандса (Shands, 1963), частота расщепления губы и неба в Англии составляет 1 : 515, в Японии — 1 : 333, в то же время spina bifida в Англии встречается в 10 раз чаще, чем в Японии, а врожденный вывих бедра наблюдается в 10 раз чаще в Японии, чем в Англии.

Частота всех хромосомных болезней среди новорожденных, по данным Кэбака (М. М. Kaback, 1978), составляет 5,6:1000, при этом все виды анеуплоидий, включая мозаичные формы, составляют 3,7 : 1000, три-сомии по аутосомам и структурные перестройки — 1,9 : 1000. Половину всех случаев структурных перестроек хромосом представляют семейные случаи, все трисомии представляют собой спорадические случаи, т. е. следствие вновь возникших мутаций. По данным Полани (P. Polani, 1970), ок.7% всех беременностей осложнены хромосомными аберрациями плода, к-рые в подавляющем большинстве случаев ведут к спонтанным абортам. Частота хромосомных аберраций у недоношэнных детей в 3—4 раза выше, чем у доношенных и составляет 2-2,5%.

Диагноз ряда Н. б. не представляет существенных затруднений и основывается на данных, полученных в результате общеклинического обследования (напр., болезнь Дауна, гемофилия, гаргоилизм, адреногенитальный синдром и др.). Однако в большинстве случаев при диагностике их возникают серьезныэ затруднения в связи с тем, что многие Н. б. по клин, проявлениям очень сходны с приобретенными болезнями — так наз. фенокопиями Н. б. Известно существование ряда фенотипически сходных, но гетерогенных в генетическом отношении болезней (напр., синдром Марфана и гомоцистинурия, галактоземия и синдром Лоу, фосфат-диабет и почечный канальцевый ацидоз). Все случаи атипично протекающих или хрон, заболеваний требуют клинико-генетического анализа. На Н. б. может указывать наличие специфических клин, признаков. Среди них особое диагностическое значение могут иметь признаки дисплазии—эпикант, гипертелоризм, седловидный ное, особенности строения лица («птичье», «кукольное», олигомимичное лицо и др.), черепа (долихоцефалия, брахицефалия, плагиоцефалия, «ягодичная» форма черепа и др.), глаз, зубов, конечностей и др.

При подозрении на Н. б. генетическое обследование больного начинается с получения подробных клинико-генеалогических данных на основании опроса о состоянии здоровья ближайших и отдаленных родственников, а также специального обследования членов семьи, что позволяет составить мед. родословную больного и определить характер наследования патологии (см. Генеалогический метод). Вспомогательное (а в ряде случаев и решающее) диагностическое значение имеют различные параклинические методы, в т. ч. биохим, и цитохим, исследования, электронная микроскопия клеток и т. д. Разработаны биохим, методы диагностики нарушений обмена веществ, основанные на применении хроматографии (см.), электрофореза (см.), ультрацентрифугирования (см.) и т. д. Для диагностики заболеваний, вызванных недостаточностью ферментов, применяют методы определения активности этих ферментов в плазме и клетках крови, в материале, полученном при биопсии органов, в культуре тканей.

Проведение биохимических исследований при Н. б. обмена в ряде случаев требует применения нагрузочных проб соединениями, метаболизм к-рых, как предполагают, нарушен. Расширение диагностических возможностей связано с разработкой и практическим использованием методов выделения, очистки и определения физ.-хим. характеристик, в т. ч. и кинетических, ферментов клеток крови и тканевых культур при Н. б.

Однако сложные аналитические методы не могут быть использованы для массовых обследований. В связи с этим проводят двухэтапное обследование с применением простых по-луколичественных методов на начальном этапе и при положительных результатах первого этапа — аналитические методы; эти программы получили название просеивающих или скрининг (см.).

Для полуколичественного определения содержания аминокислот, галактозы и ряда других соединений в крови чаще всего используют микробиологические методы (см. Гатри метод). В ряде лабораторий на нервом этапе применяют тонкослойную хроматографию. В некоторых случаях используют радиохимические методы, напр, для выявления гипотиреоза у новорожденных. Внедрение методов автоматического биохим, анализа облегчает проведение массового обследования детей на Н. б.

Во многих странах проводится массовый скрининг, при к-ром обследуются все новорожденные или дети более старшего возраста, и так наз. селективный скрининг, когда обследуются только дети из специализированных учреждений (соматических, психоневрологических, офтальмологических и других стационаров).

Массовые обследования детских контингентов (особенно новорожденных) позволяют выявлять наследственные нарушения обмена в доклинической стадии, когда диетотерапия и соответствующие лекарственные средства способны полностью предупредить развитие тяжелой инвалидности.

Разработка новых методов культивирования клеток, биохим, и цитогенетическое исследования сделали возможной пренатальную диагностику Н. б., в т. ч. всех хромосомных болезней и болезней, сцепленных с X-хромосомой, а также целый ряд наследственных нарушений обмена веществ. Результаты исследования могут служить показанием для прерывания беременности или начала лечения аномалий обмена еще во внутриутробном периоде. Пренатальная диагностика Н. б. показана в тех случаях, когда у одного из родителей обнаруживается структурная перестройка хромосом (транслокации, инверсии), когда возраст беременных женщин превышает 35 лет и когда в семье прослеживаются доминантно наследуемые заболевания или существует высокий риск возникновения рецессивных наследственных болезней — аутосомных или сцепленных с X-хромосомой.

Амниоцентез (см.) может сочетаться с амнио- и фетоскопией (см. Амниоскопия). Хромосомные аберрации в культуре клеток амниотической жидкости указывают на патологию развивающегося плода, особенно у немолодой матери, а также при наличии в семье ребенка с хромосомной патологией или множественными врожденными пороками, балансированной транслокации у одного из родителей, привычных абортов в анамнезе у матери.

Биохим, исследованиям, гл. обр. определению активности ряда ферментов, подвергают также клетки, выращенные в культуре, что позволяет обнаружить ряд болезней, обусловленных нарушением обмена липидов, мукополисахаридов, углеводов, аминокислот, нуклеиновых к-т,— всего более 70 заболеваний. Наиболее разработанными являются методы диагностики болезни Тея— Сакса, синдрома Леша—Найхана, нек-рых мукополисахаридозов.

Для диагностики большинства Н. б. требуются сложные методы биохим, исследования, выполнение к-рых возможно лишь в специальных центрах. Разработка микро-технических методов (микроспектро-фотометрия, микрофлюориметрия и радиоизотопные методы) позволила сократить сроки культивирования клеток амниотической жидкости до 7 сут., т. к. для анализа необходимо всего 10—100 клеток. Для антенатальной диагностики используют также рентгенографию, электрокардиографию плода.

Одним из наиболее распространенных методов патогенетического лечения Н. б. обмена является диетотерапия. Проведение диетотерапии требует строгого соблюдения ряда условий: точного диагноза аномалии обмена, исключающего ошибки, связанные с существованием фенотипически сходных синдромов; максимальной адаптации диеты к потребностям растущего организма; тщательного клинического и биохимического контроля.

Наиболее полно изучены возможности диетической коррекции обмена фенилаланина при фенилкетонурии. Для диетической коррекции галактоземии созданы специальные препараты: сояваль, нутрамиген (из бобов сои), безлактозный препарат энпит. Препараты типа эн пита с успехом применяют при лечении других Н. б. (синдрома Марфана, синдрома Лоренса — Муна — Бидля). Предложены также специальные диеты для лечения гистидинемии, гомо-цистинурии, кетоацидурии и др.

Продолжается поиск методов лечения больных с наследственными энзимопатиями. Заместительная терапия при энзимопатиях ограничена сравнительно небольшим числом Н. б., гл. обр. заболеваниями жел.-киш. тракта, в основе к-рых лежит недостаточность ферментов, участвующих в процессах расщепления и всасывания (муковисцидоз, дефицит дисахаридаз, трипсиногена и др.). Желудочный сок, пепсин, трипсин, панкреатин издавна применяются в медицине, проходит клин, испытания метод введения лактазы, дрожжевой сахаразы, гамма-амилазы из плесневых грибков при нарушениях всасывания лактозы, сахарозы и крахмала.

Заместительная терапия препаратами гамма-глобулина, обогащенными антителами или классами иммуноглобулинов, проводится при лечении наследственных иммунопатий, связанных с дефицитом иммуноглобулинов. Для лечения наследственных эндокринных заболеваний вводят кортикостероиды (при адре-ногенитальном синдроме), тиреоидин (при гипотиреозе), инсулин (при сахарном диабете) и т. п.

Основным препятствием при лечении наследственных энзимопатий методом введения недостающих ферментов, т. е. методом заместительной терапии, являются иммунные реакции. Новые возможности в этом направлении открывает использование искусственно созданных липидных частиц — липосом (см.). Клетки тканей захватывают липосомы, под действием клеточных липаз (см.) оболочка липосомы разрушается, и фермент проявляет свое действие внутри клетки. В качестве защитной оболочки для вводимого с терапевтической целью фермента используют также тени эритроцитов больного, нейлоновые капсулы. Новым направлением в лечении Н. б. является разработка методов индуцирования синтеза ферментов с помощью хим. препаратов и гормонов. Установлено, что барбитураты индуцируют синтез глюкуронилтрансферазы — фермента, необходимого для образования глюкуронидов билирубина (так наз. прямого билирубина), стероидных гормонов и ряда других соединений. Отмечено значительное повышение активности глюкуронилтрансферазы под влиянием фенобарбитала у больных с синдромом Криг-лера — Найяра, к-рый характеризуется резкой гипербилирубинемией в связи с наследственной недостаточностью этого фермента. Глюкокортикоиды активизируют синтез глюкозо-б-фосфат-дегидрогеназы и могут использоваться при лечении гликогенной болезни I типа (болезни Гирке) с целью предупреждения гипогликемических состояний и снижения интенсивности накопления гликогена в тканях (см. Гликогенозы). Установлено индуцирующее влияние кортикостероидов на синтез и созревание ферментных систем кишечника, в частности дисахаридаз. Эстрогенные гормоны обусловливают нарастание концентрации церулоплазмина в крови, поэтому их используют при лечении гепато-церебральной дистрофии (см.).

Индуцировать синтез ферментов могут и витамины, причем особенно заметно при так наз. витаминозависимых состояниях, к-рые характеризуются развитием гипо- или авитаминоза не в связи с ограниченным поступлением витаминов в организм, а в результате нарушения синтеза специфических транспортных белков или апоферментов (см. Ферменты). Хорошо известна эффективность высоких доз витамина В6 (от 100 мг и выше в сутки) при так наз. пиридоксинзависимых состояниях и заболеваниях (цистатио-нинурия, гомоцистинурия, семейная гипохромная анемия, а также синдром Кнаппа — Комровера, болезнь Хартнупа, нек-рые формы бронхиальной астмы). Высокие дозы витамина D (до 50 000—200 000 ME в сутки) оказались эффективными при наследственных рахитоподобных заболеваниях (фосфат-диабет, синдром де Тони — Дебре — Фанкони, почечный канальцевый ацидоз). Витамин С в дозах до 1000 мг в сутки применяют при лечении алкаптонурия Высокие дозы витамина А назначают больным с синдромами Гурлер и Гунтера (мукополисахаридозы). Отмечено улучшение состояния больных мукополисахаридозами под влиянием преднизолона.

При лечении Н. б. используют принцип подавления обменных реакций, однако для этого необходимо иметь четкое представление о влиянии химических предшественников или метаболитов блокированной реакции на функции тех или иных систем.

Успехи пластической и восстановительной хирургии определили высокую эффективность хирургического лечения наследственных и врожден-денных пороков развития. Перспективно внедрение в практику лечения Н. б. методов трансплантации, что позволит не только заменить органы, подвергшиеся необратимым изменениям, но и осуществлять пересадки с целью восстановления синтеза белков и ферментов, отсутствующих у больных. Большой научно-практический интерес может представить трансплантация иммунокомпетентных органов (вилочковой железы, костного мозга) при лечении разных форм наследственной недостаточности иммунитета.

Одним из методов лечения Н. б. является назначение препаратов, связывающих токсические продукты, образующиеся в результате блокирования определенных биохим, реакций. Так, для лечения гепатоцере-бральной дистрофии (болезни Вильсона — Коновалова) применяют препараты, образующие растворимые комплексные соединения с медью (унитиол, пеницилламин). Комплексоны (см.), специфически связывающие железо, находят применение при лечении гемохроматоза, а комп-лексоны, образующие растворимые комплексные соединения кальция,— при лечении наследственных тубуло-патий с нефролитиазом. При лечении гиперлипопротеинемий применяют холестирамин, к-рый связывает холестерин в кишэчнике и препятствует его реабсорбции.

В стадии разработок находится поиск средств воздействия, к-рыми может оперировать генная инженерия (см).

Успехи в профилактике и лечении Н. б. в первую очередь будут связаны с созданием системы диспансерного обслуживания больных с наследственными заболеваниями. На основании приказа министра здравоохранения СССР № 120 от 31 октября 1979 г. «О состоянии и мерах по дальнейшему улучшению профилактики, диагностики и лечения наследственных болезней» в СССР будет организовано 80 консультативных кабинетов по мед. генетике, а также созданы центры по медикогенетическому консультированию, по наследственной патологии у детей и по пренатальной наследственной патологии.

Сохранение и улучшение здоровья населения зависит в значительной степени от профилактики Н. б., именно в этом заключается особо важная роль генетики, изучающей интимные механизмы всех функций организма и их нарушений.

Отдельные наследственные болезни — см. статьи по названию болезней.

Моделирование наследственных болезней

Моделирование наследственных болезней заключается в воспроизведении на животных или их органах, тканях и клетках наследственных болезней человека (одного патол, процесса или фрагмента патол, процесса) с целью установления этиологии и патогенеза этих болезней и разработки методов их лечения.

Моделирование сыграло большую роль в разработке эффективных методов лечения и профилактики инф. болезней. В начале 60-х гг. 20 в. в качестве модельных объектов для изучения наследственной патологии человека стали широко использовать лабораторных животных (мышей, крыс, кроликов, хомячков и др.). Моделями Н. б. человека могут быть также сельскохозяйственные и дикие животные, как позвоночные, так и беспозвоночные.

Возможность моделирования Н. б. прежде всего связана с наличием у человека и животных гомологичных локусов, контролирующих сходные процессы обмена вещэств в норме и при патологии. Причем по закону гомологических рядов в наследственной изменчивости, сформулированному Н. И. Вавиловым в 1922 г., чем ближэ друг к другу расположены виды в их эволюционном родстве, тем больше должно быть у них гомологичных генов. У млекопитающих процессы обмела веществ, а также строение и функции органов сходны, поэтому такие животные представляют наибольший интерес для изучения Н. б. человека.

С точки зрения этиологии, более оправдано моделирование на животных тех наследственных аномалий человека, к-рые обусловлены генными мутациями. Это объясняется большей вероятностью наличия у человека и животных гомологичных генов, чем гомологичных участков (сегментов) или целых хромосом. Линин животных, являющихся носителями одной и той же наследственной аномалии, возникшей в результате мутации гена, называют мутантными.

Обязательным условием успешного моделирования Н. б. человека на животных является гомо логичность или идентичность заболеваний у человека и мутантного животного, о чем свидетельствует однозначность или сходство генных эффектов. Моделирование Н. б. человека можно также осуществлять на изолированных органах, тканях или клетках. Большой научный и практический интерес представляет частичное моделирование, т. е. воспроизведение не всего заболевания в цэ-лом, а только одного патол, процесса или даже фрагмента такого процесса.

В результате сложного взаимодействия продуктов многих генов и существования гомеостатических механизмов у высших позвоночных конечные эффекты разных мутантных генов могут оказаться во многом сходными. Однако это еще не говорит об однотипности действия генов, обусловливающих аномалии, и сходстве патогенеза. Следовательно, имеется больше специфических различий в первичных, чем во вторичных или конечных эффектах мутантных генов. Поэтому в большинстве случаев следует ожидать более выраженных особенностей в действии генов на молекулярном или клеточном уровне, чем на уровне целостного организма. Этим объясняется стремление экспериментаторов обнаружить первичное генетически обусловленное отклонение от нормы для того, чтобы правильно понять патогенез аномалии и четко разграничить клинически сходные формы заболеваний.

Возможность использования большого числа животных на различных стадиях развития патол, процесса имеет большое значение для уточнения и конкретизации патогенеза аномалий и разработки методов их терапии и профилактики.

Известно много мутантных линий животных, представляющих интерес как модели Н. б. человека. На нек-рых из них, в частности на линиях мышей с наследственным ожирением, иммунодефицитными состояниями, диабетом, мышечной дистрофией, дегенерацией сетчатки и т. д., проводятся интенсивные исследования. Большое значение придается активным поискам у животных аномалий, сходных с определенными Н. б. человека. Животных, у к-рых обнаружены такие аномалии, следует сохранять, т. к. они представляют большой интерес для медицины.

Библиография: Антенатальная диагностика генетических болезней, под ред. A. E. X. Эмери, пер. с англ., М., 1977;БадалянЛ. О., Таболин В. А. и Вельти-щ e в Ю. Е. Наследственные болезни у детей, М., 1971; Барашнев Ю. И. и Вельтищев Ю. Е. Наследственные болезни обмена веществ у детей, М., 1978, библиогр.; Бочков Н. П. Генетика человека, М., 1978, библиогр.; Д а-виденкова Е. Ф. и Либерман И. С. Клиническая генетика, Л., 1975, библиогр.; Конюхов Б. В. Биологическое моделирование наследственных болезней, М., 1969, библиогр.; H e й- ф а х С. А. Биохимические мутации у человека и экспериментальные подходы к их специфическому лечению, Журн. Всесоюз. хим. об-ва им. Д. И. Менделеева, т. 18, Л« 2, с. 125, 1973, библиогр.; Харрис Г. Основы биохимической генетики человека, пер. с англ., М., 1973, библиогр.; Эфроимсон В. П. Введение в медицинскую генетику, М., 1968; К a b а с k М. М. Medical genetics an overview, Pediat. Clin. N. Amer., v. 24, p. 395, 1978; Knapp A. Genetisclie Stoffwechselstorungen, Jena, 1977, Bibliogr.; Lenz W. Medizinische Genetik, Stuttgart, 1976, Bibliogr.; McKusick Y. Mendelian inheritance in man, Baltimore, 1978; Medical genetics, ed. by G. Szab6 a. Z. Papp, Amsterdam, 1977; The metabolic basis of inherited diseases, ed. by J. B. Stanbury a. o., N. Y., 1972.

Ю. E. Вельтищев; Б. В. Конюхов (ген.).

xn--90aw5c.xn--c1avg

Смотрите так же:

  • Особо тяжкие преступления статьи ук рф к какой категории тяжести преступления относится грабеж и разбой. тяжкие или особо тяжкие и какой по ним срок давности Грабеж - ст. 161 УК РФ: ч. 1 - средней тяжести - срок давности 6 лет […]
  • Шпаргалка право интеллектуальной собственности Шпаргалка по праву интеллектуальной собственности. Резепова В.Е. М.: Окей-книга, 2009. — 4 0 с. В пособии представлены ответы по праву интеллектуальной собственности – подотрасли […]
  • Опубликование уголовного закона это Опубликование уголовного закона это Законы Ману — древнеиндийский сборник предписаний религиозного, морально-нравственного и общественного долга (дхармы), называемый также "закон ариев" […]
  • Кинематический закон движения определение Кинематический закон движения определение Технофайл - чертеж, 3D модель, курсовая работа, расчетно-графическая работа, методичка, учебник, ГОСТ, лекции, программа, т.е. любой технический […]
  • Федеральный закон 158-фз Федеральный закон 158-фз Федеральный закон "О ветеранах" (в редакции Федерального закона от 2 января 2000 года N 40-ФЗ) (с изменениями на 7 марта 2018 года)(редакция, действующая с 18 […]
  • Телефон прикубанского суда краснодар Прикубанский районный суд г. Краснодара Краснодарского края 14 августа 1978 года, в связи с образованием Прикубанского района, был сформирован Прикубанский районный народный суд г. […]