Техногенный риск и безопасность учебное пособие

Н.Н. Чура. Техногенный. риск. Под редакцией В.А. Девисилова

Транскрипт

1 Н.Н. Чура Техногенный риск Под редакцией В.А. Девисилова Рекомендовано УМО вузов по университетскому политехническому образованию в качестве учебного пособия для студентов высших учебных заведений, обучающихся по направлениям «Безопасность жизнедеятельности», «Защита окружающей среды» КНОРУС МОСКВА 2017

2 УДК (075.8) ББК Ч-93 Рецензенты: В. А. Акимов, вице-президент Общероссийской общественной организации «Российское научное общество анализа риска», заведующий кафедрой «Природная и техногенная безопасность и управление риском» МАТИ РГТУ им. К. Э. Циолковского, д-р техн. наук, проф., В. А. Туркин, нач. кафедры «Химия и экология» МГА им. адм. Ф. Ф. Ушакова, д-р техн. наук, проф. Чура Н.Н. Ч-93 Техногенный риск : учебное пособие / Н.Н. Чура ; под ред. В. А. Девисилова. М. : КНОРУС, с. ISBN Рассмотрены и проанализированы вопросы опасностей и безопасности в техносфере, а также техногенного риска. Выполнен анализ структуры оценки риска и его составляющих вероятностной (частоты возникновения аварий) и последствий. Учтены изменения и дополнения существующих законодательных и нормативных положений в области техносферной безопасности и оценки риска. Основное внимание уделено методам количественных оценок техногенного риска и его показателей: индивидуального, потенциального, коллективного, социального, технического и экологического риска. Приводятся краткие (упрощенные) методики расчета показателей техногенного риска и примеры расчета. Для студентов бакалавриата по направлению подготовки «Техносферная безопасность», а также студентов специальности «Инженерная защита окружающей среды» и других специальностей политехнического университетского образования. Может быть полезно специалистам, занимающимся вопросами промышленной безопасности, риск-анализа и управления в кризисных ситуациях. УДК (075.8) ББК Чура Николай Николаевич техногенный риск Сертификат соответствия РОСС RU.АГ51.Н03820 от Изд Формат 60 90/16. Гарнитура «NewtonC». Печать офсетная. Усл. печ. л. 17,5. Уч.-изд. л. 12,9. ООО «Издательство «КноРус» , г. Москва, ул. Кедрова, д. 14, корп. 2. Тел.: Отпечатано в ООО «Контакт» , г. Москва, проезд Подбельского 4-й, дом 3. ISBN Чура Н.Н., 2017 ООО «Издательство «КноРус», 2017

3 ОГЛАВЛЕНИЕ ВВЕДЕНИЕ Глава 1. БЕЗОПАСНОСТЬ В ТЕХНОСФЕРЕ И ТЕХНОГЕННЫЙ РИСК 1.1. Основные понятия и определения теории безопасности и риска Безопасность и развитие общества в концепциях риска Характеристики и классификация опасностей Характеристики безопасности Реализация опасностей в техносфере. Опасные техногенные события (аварии, катастрофы, чрезвычайные ситуации) Методы оценки уровня безопасности Основные положения государственного регулирования в области техносферной безопасности Контрольные вопросы и задания Глава 2. ПОНЯТИЕ ОБ ЭКОЛОГИЧЕСКОЙ БЕЗОПАСНОСТИ И ЭКОЛОГИЧЕСКОМ РИСКЕ 2.1. Общие сведения Экология как объект изучения и субъект безопасности Безопасность экосистем Основные техногенные угрозы экологической безопасности в России Оценка риска для здоровья человека и экологического риска Последствия (ущерб, вред) как составляющая экологического риска Контрольные вопросы и задания Глава 3. СТРУКТУРА И КРИТЕРИИ РИСКА 3.1. Понятие, происхождение и назначение риска Общее содержание и структура риска Стохастический характер риска Вероятностные показатели в структуре оценки риска Связь вероятности и частоты в структуре оценки риска Классификация рисков Контрольные вопросы и задания Глава 4. РАСЧЕТНЫЕ ПОКАЗАТЕЛИ РИСКА 4.1. Общие сведения Индивидуальный и потенциальный риски Индивидуальный риск

4 4 ОГЛАВЛЕНИЕ Потенциальный риск Приемлемый индивидуальный риск Коллективный риск Социальный риск Признаки социального риска Показатели социального риска Приемлемый социальный риск Технический (материальный) риск Экологический риск Контрольные вопросы и задания Глава 5. ОСНОВЫ МЕТОДОЛОГИИ ОЦЕНКИ И АНАЛИЗА РИСКА 5.1. Общие сведения Основные этапы методологии и методики анализа риска Концепции и характеристики методов оценки рисков Методы экспертных оценок. Метод Делфи Методы проверочного листа, контрольных карт и «Что будет, если. » Анализ опасности и работоспособности Анализ вида и последствий отказа Анализ вида, последствий и критичности отказа Дерево отказов Дерево событий Контрольные вопросы и задания Глава 6. МОДЕЛИРОВАНИЕ И РАСЧЕТ ПОСЛЕДСТВИЙ АВАРИЙ ПРИ ОЦЕНКЕ РИСКА 6.1. Общие сведения Механизм определения последствий аварии Определение последствий воздействия поражающих факторов вероятностными методами (пробит-функция) Методы оценки ущерба Виды и классификация ущерба Структура определения ущерба Обоснование мер, направленных на снижение ущерба (меры инженерной защиты окружающей среды) Оценка эколого-экономических последствий загрязнения природной среды нефтью и нефтепродуктами (методика и пример расчета) Оценка количества нефти, вылившейся вследствие аварии Оценка масштаба и степени загрязнения

5 Оглавление Критерии оценки экологических последствий и предварительные рекомендации по выбору мероприятий по восстановлению земель Анализ эколого-экономических последствий загрязнения компонентов природной среды Обоснование целесообразности и оптимальных решений по проведению рекультивации земель Оценка количества пострадавших при авариях и чрезвычайных ситуациях техногенного характера (методика и пример расчета) Контрольные вопросы и задания ЗАКЛЮЧЕНИЕ СПИСОК ЛИТЕРАТУРЫ

6 ВВЕДЕНИЕ Все то, что достигнуто человечеством, связано с его развитием, а темпы роста полученных результатов в новейшей истории, безусловно, впечатляют. Колоссальные потоки материальных ресурсов, энергии и информации изменили среду обитания, создав полуискусственную техносферу, незаметно и постоянно отклоняя ее от естественных для человека условий. Новая среда жизнедеятельности (более активного поведения), удобно обустроенная за счет использования и изменения природного компонента, принесла и новые опасности. Мощный природоизменяющий потенциал развития человечества (сырье, энергия, продукты переработки), созданный в исторически кратчайшие сроки, имея высокие локальные концентрации и не имея при этом надежной изоляции от окружающей среды и адекватных мер противодействия сопутствующим опасностям, превратил их в угрозы, реализованные в конкретные аварии, и аварии, перерастающие в катастрофы. В соответствии с принятой классификацией и согласно статистике МЧС России, девять из десяти чрезвычайных ситуаций (ЧС), происходящих в последние годы, составляют техногенные, т. е. порожденные техникой. За 2009 г. в результате техногенных ЧС на территории Российской Федерации погибло 684 человека, что составляет 93 % от общего числа жертв ЧС всех видов и источников, включая природные, биолого-социальные и теракты. Результат ускоренных темпов развития техноприродных комплексов и созданных на их базе высоких технологий, с учетом его оборотной (отрицательной) стороны, показал существенное отставание в развитии социальной сферы. Социосфера здесь представляется как согласованное поведение людей, их социальная организация, которая реализуется через нормы поведения (правила, законы, традиции), приобретенные и умноженные знания (науку), практику поведения (политику). Кроме своей организации человек ничего или почти ничего не может противопоставить катастрофам и стихийным бедствиям [18]. Развитие общества потребовало и требует внедрения инноваций, объем которых стал угрозой безопасности. Обострение дилеммы «безопасность развитие» как ситуации, при которой выбор одного из двух, по своей сути, противоположных решений одинаково затруднителен, пока не принесло ощутимых ограничений в развитии и потреблении общества. В то же время количество техногенных аварий и катастроф

7 Введение 7 остается высоким. При этом в основе их также социальные причины: коллективы конструкторов, изготовителей и управленцев технических систем, являющихся частью общества; нехватка значительных материальных и общественных ресурсов для ускоренной замены большей части основных фондов производства, транспорта и коммунального хозяйства, имеющих критический износ; разумные, казалось бы, цели развития решение социально значимых задач. Последствия происходящих техногенных аварий и катастроф при этом возрастают, приобретая новые формы и представляя угрозу все большему количеству людей, инфраструктуре и природной среде. В обиходе появились новые понятия: «социальная медицина», «медицина катастроф», «центр оказания психологической помощи», за которыми стоят организации, призванные оказывать помощь пострадавшим. Таким образом, ситуация, сложившаяся на современном этапе развития, потребовала принятия эффективных мер управления процессом обеспечения безопасности человека, общества и природы (ключевая проблема), одной из организационных форм решения которой явилась концепция приемлемого риска. Сразу же постараемся акцентировать внимание читателя на верном понимании проблемы. Безопасность является желаемым состоянием человека или желаемым свойством объекта, от которого исходит (может исходить) опасность. Риск же служит мерой этого состояния (или свойства), разумеется, в своем количественном или ином выражении. Приемлемость риска, т. е. непревышение его расчетной величиной допустимых значений, может являться подтверждением достаточности уровня безопасности (она всегда относительна). Важным на этом этапе является установление допустимых значений показателей риска, что получило название «нормирование риска». На данной основе сопоставлением расчетных значений риска с нормативами выполняется процедура анализа риска. Уже имеются показатели допустимого индивидуального и социального пожарного риска одного из видов техногенного риска, установленные на законодательном уровне. Этимология (происхождение) понятия «риск», о котором речь идет дальше, это не только пояснение его первоначального смысла, но и его сущность, и исторически предназначенная роль. Таким образом, роль риска обусловлена социальным заказом и может быть кратко сформулирована в виде «предвидеть и предотвратить» или, по крайней мере, предупредить общество о возможных последствиях его деятельности.

8 8 ВВЕДЕНИЕ В первой части дисциплины «Надежность технических систем и техногенный риск» рассматриваются положения теории надежности, которая имеет в настоящее время достаточно хорошо отлаженный понятийный и исследовательский аппарат. В теоретических основах надежности разработаны способы ее количественного измерения, позволяющие решать практические задачи определения вероятности безотказной работы, наработки на отказ, интенсивности отказов и других показателей надежности. В прикладных целях рассматриваются свойства и эффективность различных методов расчета, испытаний и повышения надежности простых объектов и технических систем сложной структуры, восстанавливаемых и невосстанавливаемых, резервируемых и нерезервируемых. Основная категория, рассматриваемая во второй части учебной дисциплины и в данном учебном пособии, безопасность (риск лишь ее мера), является тесно связанной с надежностью. Однако центральное понятие, которым оперирует теория надежности, отказ (переход объекта из работоспособного состояния в неработоспособное), не учитывает дальнейшего развития событий, т. е. последствий отказов, с точки зрения их опасности для окружающей среды. Теория вероятностей и математическая статистика, составляющие основу математического аппарата теории надежности, а также основные свойства и показатели надежности имеют большое значение и широко используются в методологии оценки и анализа риска. В исследованиях техносферной безопасности и техногенного риска, а также в практической деятельности в области техносферной безопасности основным событием является событие-авария, имеющее различные отраслевые определения. Возможными причинами возникновения аварий могут быть не только отказы технических или иных систем, включая человеческий фактор, но и внешние воздействия. Анализ источников произошедших ЧС, а также статистики аварийности технических объектов различных конструкций и назначения позволяет в целом классифицировать основные группы причин возникновения аварий: внешние причины ошибки проекта, его привязки к территории; низкий уровень организации работ; человеческий фактор (ошибки обслуживающего персонала); воздействия извне не только техногенного, но и природного характера, способные инициировать крупные катастрофы; воздействия, источники которых носят социальный характер (несанкционированные действия и теракты);

9 Введение 9 внутренние причины отказы оборудования (его элементов и систем) вследствие физического износа, коррозии, механических повреждений, температурных деформаций, усталости материалов; неконтролируемые отклонения технологического процесса; дефекты конструкций (раковины, дефекты в сварных соединениях); прекращения подачи энергоресурсов; некачественные строительно-монтажные, ремонтные работы и т. д. Оценка техногенного риска (называемого так по источнику возникновения) состоит в нахождении частоты (или вероятности) возникновения события-аварии и его последствий, определяемых воздействием поражающих факторов на объекты окружающей среды. При прогнозировании риска, т. е. определении будущих состояний объектов защиты существующими методами, уровень последствий расчетных событий в общем случае также имеет вероятностный характер. Математическое ожидание ущерба (потерь) это одно из универсальных определений термина «риск», которое можно встретить в различных сферах его приложения. Негативные последствия имеют не только аварии, но и, к примеру, загрязнения окружающей среды неаварийного, т. е. постоянного или систематического характера в результате «нормальной» эксплуатации технических объектов. Риск воздействия такого рода загрязнений также подлежит оценке. Фактор последствий воздействия на человека и компоненты среды обитания природной среды (воздух, земли, водные объекты и биоресурсы) и технические объекты (здания, сооружения и т. д.) оценивается показателями риска, такими, как индивидуальный риск, социальный, экологический, технический и др. В каждом из случаев оценка последствий является сложной задачей ввиду значительного их разнообразия, сложности математического описания (формализации) и недостаточности информации о реакции на воздействия. Знания и компетенции в области техногенного риска: определение источников опасностей и возможных последствий, идентификация и ранжирование рисков, методов расчета, анализа и менеджмента рисков, определение зон повышенного техногенного риска востребованы в различных сферах практической и научной деятельности, основными из которых являются: область техносферной безопасности, в том числе промышленной, пожарной и безопасности в ЧС, а также профессиональный риск и риск с последствиями для персонала предприятий, населения и территорий; это центральная область (включая военнопромышленный комплекс и объекты использования атомной

10 10 ВВЕДЕНИЕ энергии), где идеология и методология техногенного риска получила свое первоначальное обоснование и развитие; оценка влияния на здоровье человека различных факторов окружающей, в том числе производственной среды, включая расчеты, соответствующие нормативным и методическим документам системы здравоохранения и жизнеобеспечения населения; страхование рисков, цель которого заключается в защите прав и интересов граждан и юридических лиц и достигается за счет перераспределения рисков (финансовое обеспечение ответственности); величина риска в этом случае переходит из разряда случайных событий в юридически обоснованное условие, составляющее норму договорно-страхового права; экологическая деятельность, предметная направленность и пер- спективы которой напрямую связаны и зависят от риска техногенного воздействия на природные сообщества и компоненты. В молодой и интенсивно развивающейся науке о рисках (иногда ее называют рискологией) много нерешенных вопросов, а также интересных и перспективных задач. Часть из них связана с оценкой и прогнозированием экологического риска, где объектом воздействия (и защиты) является природная среда. Здесь риск как инструмент исследования и как мера оценки уровня безопасности направлен на анализ техногенных воздействий, которым подвергается самый уязвимый и поэтому труднопрогнозируемый живой компонент. Аспекты этой проблемы, от которой зависит безопасность жизни человека и мира природы, ждут своей очереди для решения профессионально подготовленными специалистами нового поколения.

docplayer.ru

Риск техногенный

EdwART. Словарь терминов МЧС , 2010

Смотреть что такое «Риск техногенный» в других словарях:

Техногенный и экологический риск — см. Риск техногенный и экологический. EdwART. Словарь терминов МЧС, 2010 … Словарь черезвычайных ситуаций

Риск природный — вероятная мера соответствующей природной опасности, установленная для определенного объекта в виде возможных потерь за определенное времяили потенциальная возможность такого протекания природных процессов, которые оказывают негативное влияние на… … Словарь черезвычайных ситуаций

Проблемы анализа риска — «Проблемы анализа риска» Обложка журнала Специализация: Научно практический журнал … Википедия

источник — 3.18 источник (source): Объект или деятельность с потенциальными последствиями. Примечание Применительно к безопасности источник представляет собой опасность (см. ИСО/МЭК Руководство 51). [ИСО/МЭК Руководство 73:2002, пункт 3.1.5] Источник … Словарь-справочник терминов нормативно-технической документации

ГОСТ Р 52551-2006: Системы охраны и безопасности. Термины и определения — Терминология ГОСТ Р 52551 2006: Системы охраны и безопасности. Термины и определения оригинал документа: 2.2.1 безопасность: Состояние защищенности жизненно важных интересов личности, общества и государства от внутренних и внешних угроз (по… … Словарь-справочник терминов нормативно-технической документации

СП 2.6.1.799-99: Основные санитарные правила обеспечения радиационной безопасности — Терминология СП 2.6.1.799 99: Основные санитарные правила обеспечения радиационной безопасности: 3.1. Авария радиационная проектная авария, для которой проектом определены исходные и конечные состояния радиационной обстановки и предусмотрены… … Словарь-справочник терминов нормативно-технической документации

Рекомендации: Рекомендации по оценке геологического риска на территории г. Москвы — Терминология Рекомендации: Рекомендации по оценке геологического риска на территории г. Москвы: Износ физический Свойство строительного объекта и его элементов (конструкций, систем) утрачивать в процессе эксплуатации способность к выполнению… … Словарь-справочник терминов нормативно-технической документации

НРБ 99/2009: Нормы радиационной безопасности — Терминология НРБ 99/2009: Нормы радиационной безопасности: 1. Авария радиационная потеря управления источником ионизирующего излучения, вызванная неисправностью оборудования, неправильными действиями работников (персонала), стихийными бедствиями… … Словарь-справочник терминов нормативно-технической документации

СанПиН 2.6.1.2523-09: Нормы радиационной безопасности (НРБ-99/2009) — Терминология СанПиН 2.6.1.2523 09: Нормы радиационной безопасности (НРБ 99/2009): 1. Авария радиационная потеря управления источником ионизирующего излучения, вызванная неисправностью оборудования, неправильными действиями работников (персонала) … Словарь-справочник терминов нормативно-технической документации

Р 2.2./2.6.1.1195-03: — Терминология Р 2.2./2.6.1.1195 03: : 1. Доза максимальная потенциальная максимальная индивидуальная эффективная (эквивалентная) доза облучения, которая может быть получена за календарный год при работе с источниками ионизирующих излучений в… … Словарь-справочник терминов нормативно-технической документации

dic.academic.ru

Надежность и безопасность технических систем. Учебное пособие

Министерство образования Российской Федерации

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

НАДЕЖНОСТЬ И БЕЗОПАСНОСТЬ ТЕХНИЧЕСКИХ СИСТЕМ

Ветошкин А.Г., Марунин В.И. НАДЕЖНОСТЬ И БЕЗОПАСНОСТЬ ТЕХНИЧЕСКИХ СИСТЕМ. /Под ред. доктора технических наук, профессора, академика МАНЭБ А.Г.Ветошкина – Пенза: Изд-во Пенз. гос. ун-та, 2002. — 129 с.: ил., библиогр.

Рассмотрены основные положения теории надежности технических систем и техногенного риска. Приведены математические формулировки, используемые при оценке и расчете основных свойств и параметров надежности технических объектов, рассмотрены элементы физики отказов, структурные схемы надежности технических систем и их расчет, сформулированы основные методы повышения надежности и примеры использования теории надежности для оценки безопасности человеко-машинных систем.

Рассмотрена методология анализа и оценки техногенного риска, приведены основные качественные и количественные методы оценки риска, методология оценки надежности, безопасности и риска с использованием логико-графических методов анализа, критерии приемлемого риска, принципы управления риском, рассмотрены примеры использования концепции риска в инженерной практике.

Учебное пособие подготовлено на кафедре «Экология и безопасность жизнедеятельности» Пензенского государственного университета и предназначено для студентов специальности 330200 «Инженерная защита окружающей среды» и для студентов инженерных специальностей, изучающих дисциплину «Безопасность жизнедеятельности».

Кафедра «Инженерная экология» Пензенской государственной архитектурностроительной академии (зав. кафедрой доктор технических наук, профессор О.П.Сидельникова.).

Кандидат технических наук, профессор, академик МАНЭБ В.В.Арбузов (Пензенский филиал Международного независимого эколого-политологического университета.)

Издательство ПГУ А.Г.Ветошкин, В.И.Марунин

Государственная политика в области экологической и промышленной безопасности и новые концепции обеспечения безопасности и безаварийности производственных процессов на объектах экономики, диктуемые Федеральным законом «О промышленной безопасности опасных производственных объектов» от 21.07.97 №116-ФЗ, Федеральным законом «О радиационной безопасности населения» от 09.01.96 г. №3-ФЗ, Федеральным законом «О санитарно-эпидемиологическом благополучии населения» от 30.03.99 г. №52-ФЗ, Федеральным законом «Об использовании атомной энергии» от 21.11.95 г. №170-ФЗ, Федеральным законом «Об охране окружающей среды» от 10.01.02 г. №7-ФЗ, предусматривают, в первую очередь, объективную оценку опасностей и позволяют наметить пути борьбы с ними.

Экологическая и техногенная безопасность – состояние действительности, при котором с определенной вероятностью исключено проявление опасности.

Опасная ситуация возникает при нахождении человека в опасной зоне, т.е. в пространстве, где постоянно, периодически или эпизодически возникают опасности, обусловленные опасными или вредными факторами. Опасные ситуации реализуются вследствие совокупности причин, обусловливающих воздействие опасных или (и) вредных факторов на человека, что приводит к постепенному или мгновенному повреждению его здоровья.

По данным Генерального секретаря ООН, за последние 30 лет ущерб, нанесенный техногенными катастрофами, увеличился в три раза и достигает 200 млрд. долл. США в год. В России совокупный годовой материальный ущерб от техногенных аварий, включая затраты на их ликвидацию, превышает 40 млрд. руб.

Чрезвычайная ситуация (ЧС) – это совокупность событий и опасностей, внезапно нарушающих сложившиеся условия жизнедеятельности, создающих угрозу жизни и здоровью людей, среде их обитания, элементам техносферы. Техногенная чрезвычайная ситуация (техногенная ЧС) — состояние, при котором в результате возникновения источника техногенной чрезвычайной ситуации на объекте, определенной территории или акватории нарушаются нормальные условия жизни и деятельности людей, возникает угроза их жизни и здоровью, наносится ущерб имуществу населения, народному хозяйству и окружающей природной среде.

Каждую чрезвычайную ситуацию можно рассматривать как крупномасштабную опасную ситуацию, создающую угрозу одновременно большому числу людей и объектам техносферы. Стадии зарождения и развития чрезвычайной ситуации протекают, как правило, скрытно и связаны с накоплением разрушительного потенциала. На кульминационной стадии образуется множество опасных и вредных факторов, объединяемых в один или несколько поражающих факторов.

Чрезвычайные ситуации (ЧС) возникают как при стихийных явлениях природного характера, так и при техногенных авариях. В наибольшей степени аварийность свойственна угольной, горнорудной, химической, нефтегазовой и металлургической отраслям промышленности, транспорту.

Возникновение ЧС в промышленных условиях и в быту часто связано с разгерметизацией систем повышенного давления (баллонов и емкостей для хранения или перевозки сжатых, сжиженных и растворенных газов, газо- и водопроводов, систем теплоснабжения и т.п.).

ЧС возникают также в результате нерегламентированного хранения и транспортирования взрывчатых веществ, легковоспламеняющихся жидкостей, химических и радиоактивных веществ, нагретых жидкостей. Следствием этих нарушений являются взрывы, пожары, проливы химически активных жидкостей, выбросы газовых смесей.

Основными причинами крупных техногенных аварий являются:

— отказы технических систем из-за дефектов изготовления и нарушений режимов эксплуатации;

— ошибочные действия операторов технических систем;

— концентрации различных производств в промышленных зонах;

— высокий энергетический уровень технических систем;

— внешние негативные воздействия на объекты энергетики, транспорта и др.

Анализ совокупности негативных факторов, действующих в техносфере, показывает, что приоритетное влияние имеют антропогенные негативные воздействия, среди которых преобладают техногенные. Они сформировались в результате преобразующей деятельности человека и изменений в биосферных процессах, обусловленных этой деятельностью.

Под термином “опасность” понимается ситуация в окружающей природной или производственной среде, в которой при определённых условиях возможно возникновение нежелательных событий или процессов (опасных факторов), воздействие которых на окружающую среду и человека может привести к одному или совокупности из следующих последствий:

— аварии или катастрофы в техносфере;

— ухудшение состояния окружающей среды;

— отклонение здоровья человека от среднестатистического значения.

Оценка опасности различных производственных объектов заключается в определении возникновения возможных чрезвычайных ситуаций, разрушительных воздействий пожаров и взрывов на эти объекты, а также воздействия опасных факторов пожаров и взрывов на людей. Оценка этих опасных воздействий на стадии проектирования объектов осуществляется на основе нормативных требований, разработанных с учетом наиболее опасных условий протекания чрезвычайных ситуаций и проявления их негативных факторов, утечек и проливов опасных химических веществ, пожаров и взрывов, т.е. с учетом аварийной ситуации.

Как естественные, так и техногенные опасности носят потенциальный, т.е. скрытый характер. Количественной мерой опасности является риск, т.е. частота реализации опасности. Риск выражает возможную опасность, вероятность нежелательного события.

Оценка риска включает в себя анализ частоты, анализ последствий и их сочетание. В случае, когда последствия неизвестны, то под риском понимают вероятность наступления определенного сочетания нежелательных событий. Техногенный риск включает как вероятность чрезвычайной ситуации , так и величину ее последствий, оцениваемых величиной ущерба.

Таким образом, термин “опасность” описывает возможность осуществления некоторых условий технического, природного и социального характера, при наличии которых могут наступить интересующие нас неблагоприятные события и процессы, например, природные катастрофы или бедствия, аварии на промышленных предприятиях,

экономические или социальные кризисы. Следовательно, “опасность” – это ситуация, постоянно присутствующая в окружающей среде и способная при определённых условиях привести к реализации в окружающей среде нежелательного события – возникновению опасного фактора. Соответственно реализация опасности – это обычно случайное явление, и возникновение опасного фактора характеризуется вероятностью явления.

Безопасность – состояние защищённости отдельных лиц, общества и природной среды от чрезмерной опасности.

В качестве единиц измерения безопасности предлагается использовать показатели, характеризующие состояние здоровья человека и состояние (качество) окружающей среды. Соответственно, целью процесса обеспечения безопасности является достижение максимально благоприятных показателей здоровья человека и высокого качества окружающей среды.

1. Основные понятия надежности технических систем

Термины надежность, безопасность, опасность и риск часто смешивают, при этом их значения перекрываются. Часто термины анализ безопасности или анализ опасности используются как равнозначные понятия. Наряду с термином анализ надежности они относятся к исследованию как работоспособности, отказов оборудования, потери работоспособности, так и процесса их возникновения.

Обеспечение надежности систем охватывает самые различные аспекты человеческой деятельности. Надежность является одной из важнейших характеристик, учитываемых на этапах разработки, проектирования и эксплуатации самых различных технических систем.

С развитием и усложнением техники углубилась и развивалась проблема ее надежности. Изучение причин, вызывающих отказы объектов, определение закономерностей, которым они подчиняются, разработка метода проверки надежности изделий и способов контроля надежности, методов расчетов и испытаний, изыскание путей и средств повышения надежности – являются предметом исследований надежности.

Если в результате анализа требуется определить параметры, характеризующие безопасность, необходимо в дополнение к отказам оборудования и нарушениям работоспособности системы рассмотреть возможность повреждений самого оборудования или вызываемых ими других повреждений. Если на этой стадии анализа безопасности предполагается возможность отказов в системе, то проводится анализ риска для того, чтобы определить последствия отказов в смысле ущерба, наносимого оборудованию, и последствий для людей, находящихся вблизи него.

Наука о надежности является комплексной наукой и развивается в тесном взаимодействии с другими науками, такими как физика, химия, математика и др., что особенно наглядно проявляется при определении надежности систем большого масштаба и сложности.

При изучении вопросов надежности рассматривают самые разнообразные объекты — изделия, сооружения, системы с их подсистемами. Надежность изделия зависит от надежности его элементов, и чем выше их надежность, тем выше надежность всего изделия.

Надежность — свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, хранения и транспортирования. Недостаточная надежность объекта приводит к огромным затратам на его ремонт, простою машин, прекращению снабжения населения электроэнергией, водой, газом, транспортными средствами, невыполнению ответственных задач, иногда к авариям, связанным с большими экономическими потерями, разрушением крупных объектов и с человеческими жертвами. Чем меньше надежность машин, тем большие партии их приходится изготовлять, что приводит к перерасходу металла, росту производственных мощностей, завышению расходов на ремонт и эксплуатацию.

Надежность объекта является комплексным свойством, ее оценивают по четырем показателям — безотказности, долговечности, ремонтопригодности и сохраняемости или по сочетанию этих свойств.

Безотказность — свойство объекта сохранять работоспособность непрерывно в течение некоторого времени или некоторой наработки. Это свойство особенно важно

для машин, отказ в работе которых связан с опасностью для жизни людей. Безотказность свойственна объекту в любом из возможных режимов его существования, в том числе, при хранении и транспортировке.

Долговечность — свойство объекта сохранять работоспособное состояние до наступления предельного состояния при установленной системе технического обслуживания и ремонта.

В отличие от безотказности долговечность характеризуется продолжительностью работы объекта по суммарной наработке, прерываемой периодами для восстановления его работоспособности в плановых и неплановых ремонтах и при техническом обслуживании.

Предельное состояние — состояние объекта, при котором его дальнейшая эксплуатация недопустима или нецелесообразна, либо восстановление его работоспособного состояния невозможно или нецелесообразно.

Ремонтопригодность — свойство объекта, заключающееся в его приспособленности к поддержанию и восстановлению работоспособного состояния путем проведения технического обслуживания и ремонта. Важность ремонтопригодности технических систем определяется огромными затратами на ремонт машин.

Сохраняемость — свойство объекта сохранять в заданных пределах значения параметров, характеризующих способность объекта выполнять требуемые функции, в течение и после хранения и (или) транспортирования. Практическая роль этого свойства велика для деталей, узлов и механизмов, находящихся на хранении в комплекте запасных принадлежностей.

Объекты подразделяют на невосстанавливаемые, которые не могут быть восстановлены потребителем и подлежат замене (например, электрические лампочки, подшипники, резисторы и т.д.), и восстанавливаемые, которые могут быть восстановлены потребителем (например, телевизор, автомобиль, трактор, станок и т.д.).

Надежность объекта характеризуется следующими состояниями: исправное, неисправное, работоспособное, неработоспособное.

Исправное состояние — такое состояние объекта, при котором он соответствует всем требованиям нормативно-технической и (или) конструкторской (проектной) документации. Исправное изделие обязательно работоспособно.

Неисправное состояние — такое состояние объекта, при котором он не соответствует хотя бы одному из требований нормативно-технической и (или) конструкторской (проектной) документации. Различают неисправности, не приводящие к отказам, и неисправности, приводящие к отказам. Например, повреждение окраски автомобиля означает его неисправное состояние, но такой автомобиль работоспособен.

Работоспособным состоянием называют такое состояние объекта, при котором он способен выполнять заданные функции, соответствующие требованиям нормативнотехнической и (или) конструкторской (проектной) документации.

Неработоспособное изделие является одновременно неисправным.

Отказ — событие, заключающееся в нарушении работоспособного состояния объекта.

Отказы по характеру возникновения подразделяют на случайные и неслучайные (систематические).

Случайные отказы вызваны непредусмотренными нагрузками, скрытыми дефектами материалов, погрешностями изготовления, ошибками обслуживающего персонала.

Неслучайные отказы — это закономерные явления, вызывающие постепенное накопление повреждений, связанные с влиянием среды, времени, температуры, облучения и т. п.

В зависимости от возможности прогнозировать момент наступления отказа все отказы подразделяют на внезапные (поломки, заедания, отключения) и постепенные (износ, старение, коррозия).

По причинам возникновения отказы классифицируют на конструктивные (вызванные недостатками конструкции), производственные (вызванные нарушениями технологии изготовления) и эксплуатационные (вызванные неправильной эксплуатацией).

2. Показатели надежности технических систем

Показателями надежности называют количественные характеристики одного или нескольких свойств объекта, составляющих его надежность. К таким характеристикам относят, например, временные понятия — наработку, наработку до отказа, наработку между отказами, ресурс, срок службы, время восстановления. Значения этих показателей получают по результатам испытаний или эксплуатации.

По восстанавливаемости изделий показатели надежности подразделяют на пока-

затели для восстанавливаемых изделий и показатели невосстанавливаемых изделий.

Применяются также комплексные показатели. Надежность изделий, в зависимости от их назначения, можно оценивать, используя либо часть показателей надежности, либо все показатели.

— вероятность безотказной работы — вероятность того, что в пределах заданной наработки отказ объекта не возникает;

— средняя наработка до отказа — математическое ожидание наработки объекта до первого отказа;

— средняя наработка на отказ — отношение суммарной наработки восстанавливаемого объекта к математическому ожиданию числа его отказов в течение этой наработки;

— интенсивность отказов — условная плотность вероятности возникновения отказа объекта, определяемая при условии, что до рассматриваемого момента времени отказ не возник. Этот показатель относится к невосстанавливаемым изделиям.

Количественные показатели долговечности восстанавливаемых изделий делятся на 2 группы.

1. Показатели, связанные со сроком службы изделия:

— срок службы — календарная продолжительность эксплуатации от начала эксплуатации объекта или ее возобновление после ремонта до перехода в предельное состояние;

— средний срок службы — математическое ожидание срока службы;

— срок службы до первого капитального ремонта агрегата или узла – это про-

должительность эксплуатации до ремонта, выполняемого для восстановления исправности и полного или близкого к полному восстановления ресурса изделия с заменой или восстановлением любых его частей, включая базовые;

— срок службы между капитальными ремонтами , зависящий преимущественно от качества ремонта, т.е. от того, в какой степени восстановлен их ресурс;

— суммарный срок службы – это календарная продолжительность работы технической системы от начала эксплуатации до выбраковки с учетом времени работы после ремонта;

— гамма-процентный срок службы — календарная продолжительность эксплуатации, в течение которой объект не достигнет предельного состояния с вероятностью γ , выраженной в процентах.

Показатели долговечности, выраженные в календарном времени работы, позволяют непосредственно использовать их в планировании сроков организации ремонтов, поставки запасных частей, сроков замены оборудования. Недостаток этих показателей заключается в том, что они не позволяют учитывать интенсивность использования оборудования.

2. Показатели, связанные с ресурсом изделия:

— ресурс — суммарная наработка объекта от начала его эксплуатации или ее возобновление после ремонта до перехода в предельное состояние.

— средний ресурс — математическое ожидание ресурса; для технических систем в качестве критерия долговечности используют технический ресурс;

— назначенный ресурс – суммарная наработка, при достижении которой эксплуатация объекта должна быть прекращена независимо от его технического состояния;

— гамма-процентный ресурс — суммарная наработка, в течение которой объект не достигнет предельного состояния с заданной вероятностью γ , выраженной в процентах.

Единицы для измерения ресурса выбирают применительно к каждой отрасли и к каждому классу машин, агрегатов и конструкций отдельно. В качестве меры продолжительности эксплуатации может быть выбран любой неубывающий параметр, характеризующий продолжительность эксплуатации объекта (для самолетов и авиационных двигателей естественной мерой ресурса служит налет в часах, для автомобилей – пробег в километрах, для прокатных станов – масса прокатанного металл в тоннах. Если наработку измерять числом производственных циклов, то ресурс будет принимать дискретные значения.

Комплексные показатели надежности.

Показателем, определяющим долговечность системы, объекта, машины, может служить коэффициент технического использования.

Коэффициент технического использования — отношение математического ожи-

дания суммарного времени пребывания объекта в работоспособном состоянии за некоторый период эксплуатации к математическому ожиданию суммарного времени пребывания объекта в работоспособном состоянии и всех простоев для ремонта и технического обслуживания:

Коэффициент технического использования, взятый за период между плановыми ремонтами и техническим обслуживанием, называется коэффициентом готовности, ко-

торый оценивает непредусмотренные остановки машины и что плановые ремонты и мероприятия по техническому обслуживанию не полностью выполняют свою роль.

Коэффициент готовности — вероятность того, что объект окажется в работоспособном состоянии в произвольный момент времени, кроме планируемых периодов, в течение которых применение объекта по назначению не предусматривается. Физический смысл коэффициента готовности — это вероятность того, что в прогнозируемый момент времени изделие будет исправно, т.е. оно не будет находиться во внеплановом ремонте.

Коэффициент оперативной готовности — вероятность того, что объект ока-

жется в работоспособном состоянии в произвольный момент времени, кроме планируемых периодов, в течение которых применение объекта по назначению не предусматривается, и, начиная с этого момента, будет работать безотказно в течение заданного интервала времени.

Классификация показателей . В зависимости от способа получения показатели подразделяют на расчетные, получаемые расчетными методами; экспериментальные, определяемые по данным испытаний; эксплуатационные, получаемые по данным эксплуатации.

В зависимости от области использования различают показатели надежности нормативные и оценочные.

Нормативными называют показатели надежности, регламентированные в нор- мативно-технической или конструкторской документации.

К оценочным относят фактические значения показателей надежности опытных образцов и серийной продукции, получаемые по результатам испытаний или эксплуатации.

3. Математические зависимости для оценки надежности

3.1. Функциональные зависимости надежности

Отказы, возникающие в процессе испытаний или эксплуатации, могут быть вызваны неблагоприятным сочетанием различных факторов — рассеянием действующих нагрузок, отклонением от номинального значения механических характеристик материалов, неблагоприятным сочетанием допусков в местах сопряжения и т. п. Поэтому в расчетах надежности различные параметры рассматривают как случайные величины, которые могут принимать то или иное значение, неизвестное заранее.

studfiles.net

Смотрите так же:

  • Ст 583 закона n 212-фз Ст 583 закона n 212-фз Лицам, имеющим право как на ежемесячное пособие по уходу за ребенком, так и на пособие по безработице, предоставляется право выбора получения пособия по одному из […]
  • 2 ст 34 закона 44-фз В соответствии с частью 2 ст. 34 Федерального закона от 05.04.2013 N 44-ФЗ "О контрактной системе в сфере закупок товаров, работ, услуг для обеспечения государственных и муниципальных […]
  • Возврат обеспечения контракта при одностороннем расторжении Возврат обеспечения контракта при одностороннем расторжении 15. При заключении контракта в случаях, предусмотренных пунктами 4, 15 и 28 части 1 статьи 93 настоящего Федерального закона, […]
  • Образец реестра в деле Реестр контрактов по 44-ФЗ и 223-ФЗ: полный обзор, правила ведения реестров + необходимые документы Здравствуйте, уважаемый(ая) коллега! В сегодняшней статье речь пойдет о реестре […]
  • Порядок расчета пенсии мвд Порядок расчета пенсии мвд Данный расчет основан на: 1. Федеральном Законе "О социальных гарантиях сотрудникам органов внутренних дел" 2. Постановлении Правительства РФ от 03.11.2011 г. N […]
  • Консультант законы положения Статья 30. Участие субъектов малого предпринимательства, социально ориентированных некоммерческих организаций в закупках Ст. 30 44-ФЗ в последней действующей редакции от 1 июля 2018 […]