Урок законы сложения целых чисел

Сложение и вычитание целых чисел

В этом уроке мы изучим сложение и вычитание целых чисел, а также правила для их сложения и вычитания.

Напомним, что целые числа — это все положительные и отрицательные числа, а также число 0. Например, следующие числа являются целыми:

Положительные числа легко складываются и вычитаются, умножаются и делятся. К сожалению, этого нельзя сказать об отрицательных числах, которые смущают многих новичков своими минусами перед каждой цифрой. Как показывает практика, ошибки сделанные из-за отрицательных чисел, расстраивают обучающихся больше всего.

Примеры сложения и вычитания целых чисел

Первое чему следует научиться, это складывать и вычитать целые числа с помощью координатной прямой. Совсем необязательно рисовать координатную прямую. Достаточно воображать её в своих мыслях и видеть, где располагаются отрицательные числа, а где положительные.

Рассмотрим простейшее выражение: 1 + 3. Значение данного выражения равно 4:

Этот пример можно понять с помощью координатной прямой. Для этого из точки, где располагается число 1, нужно сдвинуться вправо на три шага. В результате, мы окажемся в точке, где располагается число 4. На рисунке можно увидеть как это происходит:

Знак плюса в выражении 1 + 3 указывает нам, что мы должны двигаться вправо в сторону увеличения чисел.

Пример 2. Найдём значение выражения 1 − 3.

Значение данного выражения равно −2

Этот пример опять же можно понять с помощью координатной прямой. Для этого из точки, где располагается число 1 нужно сдвинуться влево на три шага. В результате мы окажемся в точке, где располагается отрицательное число −2. На рисунке можно увидеть, как это происходит:

Знак минуса в выражении 1 − 3 указывает нам, что мы должны двигаться влево в сторону уменьшения чисел.

Вообще, надо запомнить, что если осуществляется сложение, то нужно двигаться вправо в сторону увеличения. Если же осуществляется вычитание, то нужно двигаться влево в сторону уменьшения.

Пример 3. Найти значение выражения −2 + 4

Значение данного выражения равно 2

Этот пример опять же можно понять с помощью координатной прямой. Для этого из точки, где располагается отрицательное число −2 нужно сдвинуться вправо на четыре шага. В результате мы окажемся в точке, где располагается положительное число 2.

Видно, что мы сдвинулись из точки где располагается отрицательное число −2 в правую сторону на четыре шага и оказались в точке, где располагается положительное число 2.

Знак плюса в выражении −2 + 4 указывает нам, что мы должны двигаться вправо в сторону увеличения чисел.

Пример 4. Найти значение выражения −1 − 3

Значение данного выражения равно −4

Этот пример опять же можно решить с помощью координатной прямой. Для этого из точки, где располагается отрицательное число −1 нужно сдвинуться влево на три шага. В результате мы окажемся в точке, где располагается отрицательное число −4

Видно, что мы сдвинулись из точки где располагается отрицательное число −1 в левую сторону на три шага и оказались в точке, где располагается отрицательное число −4.

Знак минуса в выражении −1 − 3 указывает нам, что мы должны двигаться влево в сторону уменьшения чисел.

Пример 5. Найти значение выражения −2 + 2

Значение данного выражения равно 0

Этот пример можно решить с помощью координатной прямой. Для этого из точки, где располагается отрицательное число −2 нужно сдвинуться вправо на два шага. В результате мы окажемся в точке, где располагается число 0

Видно, что мы сдвинулись из точки где располагается отрицательное число −2 в правую сторону на два шага и оказались в точке, где располагается число 0.

Знак плюса в выражении −2 + 2 указывает нам, что мы должны двигаться вправо в сторону увеличения чисел.

Правила сложения и вычитания целых чисел

Чтобы вычислить то или иное выражение, необязательно каждый раз воображать координатную прямую, и тем более рисовать её. Удобнее воспользоваться готовыми правилами.

Применяя правила, нужно обращать внимания на знак операции и знаки чисел, которые нужно сложить или вычесть. От этого будет зависеть какое правило применять.

Пример 1. Найти значение выражения −2 + 5

Здесь к отрицательному числу прибавляется положительное число. Другими словами, осуществляется сложение чисел с разными знаками. −2 это отрицательное число, а 5 — положительное. Для таких случаев предусмотрено следующее правило:

Чтобы сложить числа с разными знаками, нужно из большего модуля вычесть меньший модуль, и перед полученным ответом поставить тот знак, модуль которого больше.

Итак, посмотрим какой модуль больше:

Модуль числа 5 больше, чем модуль числа −2. Правило требует из большего модуля вычесть меньший. Поэтому, мы должны из 5 вычесть 2, и перед полученным ответом поставить тот знак, модуль которого больше.

У числа 5 модуль больше, поэтому знак этого числа и будет в ответе. То есть, ответ будет положительным:

Обычно записывают покороче −2 + 5 = 3

Пример 2. Найти значение выражения 3 + (−2)

Здесь как и в предыдущем примере, осуществляется сложение чисел с разными знаками. 3 — это положительное число, а −2 — отрицательное. Обратите внимание, что число −2 заключено в скобки, чтобы сделать выражение понятнее и красивее. Это выражение намного проще для восприятия, чем выражение 3+−2.

Итак, применим правило сложения чисел с разными знаками. Как и в прошлом примере, из большего модуля вычитаем меньший модуль и перед ответом ставим тот знак, модуль которого больше:

3 + (−2) = |3| − |−2| = 3 − 2 = 1

Модуль числа 3 больше, чем модуль числа −2, поэтому мы из 3 вычли 2, и перед полученным ответом поставили тот знак модуль, которого больше. У числа 3 модуль больше, поэтому знак этого числа и поставлен в ответе. То есть, ответ положительный.

Обычно записывают покороче 3 + (−2) = 1

Пример 3. Найти значение выражения 3 − 7

В этом выражении из меньшего числа вычитается большее. Для такого случая предусмотрено следующее правило:

Чтобы из меньшего числа вычесть большее, нужно из большего числа вычесть меньшее и перед полученным ответом поставить минус.

В этом выражении есть небольшая загвоздка. Вспомним, что знак равенства (=) ставится между величинами и выражениями тогда, когда они равны между собой.

Значение выражения 3 − 7 как мы узнали равно −4. Это означает, что любые преобразования которые мы будем совершать в данном выражении, должны быть равны −4

Но мы видим, что на втором этапе располагается выражение 7 − 3, которое не равно −4.

Чтобы исправить эту ситуацию, выражение 7 − 3 нужно взять в скобки и перед этой скобкой поставить минус:

3 − 7 = − (7 − 3) = − (4) = −4

В этом случае равенство будет соблюдаться на каждом этапе:

После того как выражение вычислено, скобки можно убрать, что мы и сделали.

Поэтому, чтобы быть более точным, решение должно выглядеть так:

3 − 7 = − (7 − 3) = − (4) = − 4

Данное правило можно записать с помощью переменных. Выглядеть оно будет следующим образом:

a − b = − (b − a)

Большое количество скобок и знаков операций могут усложнять решение, казалось бы совсем простой задачи, поэтому целесообразнее научиться записывать такие примеры коротко, например 3 − 7 = − 4.

На самом деле сложение и вычитание целых чисел сводится только к сложению. Что это означает? Это означает, что если требуется осуществить вычитание чисел, эту операцию можно заменить сложением.

Итак знакомимся с новым правилом:

Вычесть одно число из другого означает прибавить к уменьшаемому такое число, которое будет противоположно вычитаемому.

Например, рассмотрим простейшее выражение 5 − 3. На начальных этапах изучения математики мы просто ставили знак равенства и записывали ответ:

Но сейчас мы прогрессируем в изучении, поэтому надо приспосабливаться к новым правилам. Новое правило говорит, что вычесть одно число из другого означает прибавить к уменьшаемому такое число, которое будет противоположно вычитаемому.

На примере выражения 5−3 попробуем понять это правило. Уменьшаемое в данном выражении это 5, а вычитаемое это 3. Правило говорит, что для того чтобы из 5 вычесть 3 , нужно к 5 прибавить такое число, которое будет противоположно 3. Противоположное для числа 3 это число −3. Записываем новое выражение:

А как находить значения для таких выражений мы уже знаем. Это сложение чисел с разными знаками, которое мы рассмотрели выше. Чтобы сложить числа с разными знаками, нужно из большего модуля вычесть меньший, и перед полученным ответом поставить тот знак, модуль которого больше:

5 + (−3) = |5| − |−3| = 5 − 3 = 2

Модуль числа 5 больше, чем модуль числа −3. Поэтому мы из 5 вычли 3 и получили 2. У числа 5 модуль больше, поэтому знак этого числа и поставили в ответе. То есть ответ положителен.

Поначалу быстро заменять вычитание сложением удаётся не всем. Это связано с тем, что положительные числа записываются без своего знака плюс.

Например, в выражении 3 − 1 знак минуса, указывающий на вычитание, является знаком операции и не относится к единице. Единица в данном случае является положительным числом и у неё есть свой знак плюса, но мы его не видим, поскольку плюс перед положительными числами по традиции не записывают.

А стало быть для наглядности данное выражение можно записать следующим образом:

Для удобства числа со своим знаками заключают в скобки. В таком случае заменить вычитание сложением намного проще. Вычитаемое в данном случае это число (+1), а противоположное ему число (−1). Заменим операцию вычитания сложением и вместо вычитаемого (+1) записываем противоположное ему число (−1)

(+3) − (+1) = (+3) + (−1) = |+3| − |−1| = 3 − 1 = 2

На первый взгляд покажется, какой смысл в этих лишних телодвижениях, если можно старым добрым методом поставить знак равенства и сразу записать ответ 2. На самом деле это правило ещё не раз нас выручит.

Решим предыдущий пример 3 − 7, используя правило вычитания. Сначала приведём выражение к нормальному виду, расставив каждому числу свои знаки. У тройки знак плюса, поскольку она является положительным числом. Минус, указывающий на вычитание не относится к семёрке. У семёрки знак плюса, поскольку она также является положительным числом:

Заменим вычитание сложением:

Дальнейшее вычисление не составляет труда:

Пример 7. Найти значение выражения −4 − 5

Перед нами снова операция вычитания. Эту операцию нужно заменить сложением. К уменьшаемому (−4) прибавим число, противоположное вычитаемому (+5). Противоположное число для вычитаемого (+5) это число (−5).

Мы пришли к ситуации, где нужно сложить отрицательные числа. Для таких случаев предусмотрено следующее правило:

Чтобы сложить отрицательные числа, нужно сложить их модули, и перед полученным ответом поставить минус.

Итак, сложим модули чисел, как от нас требует правило и поставим перед полученным ответом минус:

(−4) − (+5) = (−4) + (−5) = |−4| + |−5| = 4 + 5 = −9

Запись с модулями необходимо заключить в скобки и перед этими скобками поставить минус. Так мы обеспечим минус, который должен стоять перед ответом:

(−4) − (+5) = (−4) + (−5) = −(|−4| + |−5|) = −(4 + 5) = −(9) = −9

Решение для данного примера можно записать покороче:

Пример 8. Найти значение выражения −3 − 5 − 7 − 9

Приведём выражение к понятному виду. Здесь все числа, кроме числа −3 являются положительными, поэтому у них будут знаки плюса:

Заменим операции вычитания операциями сложения. Все минусы (кроме минуса, который перед тройкой) поменяются на плюсы и все положительные числа поменяются на противоположные:

Теперь применим правило сложения отрицательных чисел. Чтобы сложить отрицательные числа, нужно сложить их модули и перед полученным ответом поставить минус:

= −( |−3| + |−5| + |−7| + |−9| ) = −(3 + 5 + 7 + 9) = −(24) = −24

−3 − 5 − 7 − 9 = −(3 + 5 + 7 + 9) = −24

Пример 9. Найти значение выражения −10 + 6 − 15 + 11 − 7

Приведём выражение к понятному виду:

Здесь сразу две операции: сложение и вычитание. Сложение оставляем как есть, а вычитание заменяем сложением:

(−10) + (+6) − (+15) + (+11) − (+7) = (−10) + (+6) + (−15) + (+11) + (−7)

Соблюдая порядок действий, выполним поочерёдно каждое действие, опираясь на ранее изученные правила. Записи с модулями можно пропустить:

Первое действие:

(−10) + (+6) = − (10 − 6) = − (4) = − 4

(−4) + (−15) = − (4 + 15) = − (19) = − 19

(−19) + (+11) = − (19 − 11) = − (8) = −8

Четвёртое действие:

(−8) + (−7) = − (8 + 7) = − (15) = − 15

Таким образом, значение выражения −10 + 6 − 15 + 11 − 7 равно −15

Примечание. Приводить выражение к понятному виду, заключая числа в скобки, вовсе необязательно. Когда происходит привыкание к отрицательным числам, это действие можно пропустить, поскольку оно отнимает время и может запутать.

Итак, для сложения и вычитания целых чисел необходимо запомнить следующие правила:

Чтобы из меньшего числа вычесть большее, нужно из большего числа вычесть меньшее и перед полученным ответом поставить знак минуса.

Вычесть одно число из другого означает, прибавить к уменьшаемому число противоположное вычитаемому.

Чтобы сложить отрицательные числа, нужно сложить их модули, и перед полученным ответом поставить знак минус.

spacemath.xyz

Умножение и деление целых чисел

При умножении и делении целых чисел применяется несколько правил. В данном уроке мы рассмотрим каждое из них.

При умножении и делении целых чисел следует обращать внимание на знаки чисел. От них будет зависеть, какое правило применять. Также необходимо изучить несколько законов умножения и деления. Изучение этих правил позволяет избежать некоторые досадные ошибки в будущем.

Законы умножения

Некоторые из законов математики мы рассматривали в уроке законы математики. Но мы рассмотрели не все законы. В математике немало законов, и разумнее будет изучать их последовательно по мере необходимости.

Для начала вспомним из чего состоит умножение. Умножение состоит из трёх параметров: множимого, множителя и произведения. Например в выражении 3 × 2 = 6 , число 3 — это множимое, число 2 — множитель, число 6 — произведение.

Множимое показывает, что именно мы увеличиваем. В нашем примере мы увеличиваем число 3.

Множитель показывает во сколько раз нужно увеличить множимое. В нашем примере множитель это число 2. Этот множитель показывает во сколько раз нужно увеличить множимое 3. То есть, в ходе операции умножения число 3 будет увеличено в два раза.

Произведение это собственно результат операции умножения. В нашем примере произведение это число 6. Это произведение является результатом умножения 3 на 2.

Выражение 3 × 2 также можно понимать, как сумму двух троек. Множитель 2 в данном случае будет показывать сколько раз нужно взять число 3:

Таким образом, если взять число 3 два раза подряд, получится число 6.

Переместительный закон умножения

Множимое и множитель называют одним общим словом – сомножители. Переместительный закон умножения выглядит следующим образом:

От перестановки мест сомножителей произведение не меняется.

Проверим так ли это. Умножим к примеру 3 на 5. Здесь 3 и 5 это сомножители.

Теперь поменяем местами сомножители:

В обоих случаях, мы получаем ответ 15, значит между выражениями 3 × 5 и 5 × 3 можно поставить знак равенства, поскольку они равны одному тому же значению:

А с помощью переменных переместительный закон умножения можно записать так:

где a и b — сомножители

Сочетательный закон умножения

Этот закон говорит о том, что если выражение состоит из нескольких сомножителей, то произведение не будет зависеть от порядка действий.

К примеру выражение 3 × 2 × 4 состоит из нескольких сомножителей. Чтобы его вычислить, можно перемножить 3 и 2, затем полученное произведение умножить на оставшееся число 4. Выглядеть это будет так:

3 × 2 × 4 = (3 × 2) × 4 = 6 × 4 = 24

Это был первый вариант решения. Второй вариант состоит в том, чтобы перемножить 2 и 4, затем полученное произведение умножить на оставшееся число 3. Выглядеть это будет так:

3 × 2 × 4 = 3 × (2 × 4) = 3 × 8 = 24

В обоих случаях мы получаем ответ 24. Поэтому между выражениями (3 × 2) × 4 и 3 × (2 × 4) можно поставить знак равенства, поскольку они равны одному и тому же значению:

(3 × 2) × 4 = 3 × (2 × 4)

а с помощью переменных сочетательный закон умножения можно записать так:

a × b × c = (a × b) × c = a × (b × c)

где вместо a, b, c могут стоять любые числа.

Распределительный закон умножения

Распределительный закон умножения позволяет умножить сумму на число. Для этого каждое слагаемое этой суммы умножается на это число, затем полученные результаты складывают.

Например, найдём значение выражения (2 + 3) × 5

Выражение находящееся в скобках является суммой. Эту сумму нужно умножить на число 5. Для этого каждое слагаемое этой суммы, то есть числа 2 и 3 нужно умножить на число 5, затем полученные результаты сложить:

(2 + 3) × 5 = 2 × 5 + 3 × 5 = 10 + 15 = 25

Значит значение выражения (2 + 3) × 5 равно 25 .

С помощью переменных распределительный закон умножения записывается так:

(a + b) × c = a × c + b × c

где вместо a, b, c могут стоять любые числа.

Закон умножения на ноль

Этот закон говорит о том, что если в любом умножении имеется хотя бы один ноль, то в ответе получится ноль.

Произведение равно нулю, если хотя бы один из сомножителей равен нулю.

Например, выражение 0 × 2 равно нулю

В данном случае число 2 является множителем и показывает во сколько раз нужно увеличить множимое. То есть, во сколько раз увеличить ноль. Буквально это выражение читается как «увеличить ноль в два раза». Но как можно увеличить ноль в два раза, если это ноль?

Другими словами, если «ничего» увеличить в два раза или даже в миллион раз, всё равно получится «ничего».

И если в выражении 0 × 2 поменять местами сомножители, опять же получится ноль. Это мы знаем из предыдущего переместительного закона:

Примеры применения закона умножения на ноль:

2 × 5 × 0 × 9 × 1 = 0

В последних двух примерах имеется несколько сомножителей. Увидев в них ноль, мы сразу в ответе поставили ноль, применив закон умножения на ноль.

Мы рассмотрели основные законы умножения. Далее рассмотрим умножение целых чисел.

Умножение целых чисел

Пример 1. Найти значение выражения −5 × 2

Это умножение чисел с разными знаками. −5 является отрицательным числом, а 2 – положительным. Для таких случаев нужно применять следующее правило:

Чтобы перемножить числа с разными знаками, нужно перемножить их модули, и перед полученным ответом поставить минус.

−5 × 2 = − (|−5| × |2|) = − (5 × 2) = − (10) = −10

Обычно записывают покороче: −5 × 2 = −10

Любое умножение может быть представлено в виде суммы чисел. Например, рассмотрим выражение 2 × 3. Оно равно 6.

Множителем в данном выражение является число 3. Этот множитель показывает во сколько раз нужно увеличить двойку. Но выражение 2 × 3 также можно понимать как сумму трёх двоек:

То же самое происходит и с выражением −5 × 2. Это выражение может быть представлено в виде суммы

А выражение (−5) + (−5) равно −10, и мы это знаем из прошлого урока. Это сложение отрицательных чисел. Напомним, что результат сложения отрицательных чисел есть отрицательное число.

Пример 2. Найти значение выражения 12 × (−5)

Это умножение чисел с разными знаками. 12 – положительное число, (−5) – отрицательное. Опять же применяем предыдущее правило. Перемножаем модули чисел и перед полученным ответом ставим минус:

12 × (−5) = − (|12| × |−5|) = − (12 × 5) = − (60) = −60

Обычно записывают короче: 12 × (−5) = −60

Пример 3. Найти значение выражения 10 × (−4) × 2

Это выражение состоит из нескольких сомножителей. Сначала перемножим 10 и (−4), затем полученное число умножим на 2. Попутно применим ранее изученные правила:

10 × (−4) = −(|10| × |−4|) = −(10 × 4) = (−40) = −40

Второе действие:

−40 × 2 = −(|−40 | × | 2|) = −(40 × 2) = −(80) = −80

Значит значение выражения 10 × (−4) × 2 равно −80

Обычно записывают короче: 10 × (−4) × 2 = −40 × 2 = −80

Пример 4. Найти значение выражения (−4) × (−2)

Это умножение отрицательных чисел. В таких случаях нужно применять следующее правило:

Чтобы перемножить отрицательные числа, нужно перемножить их модули и перед полученным ответом поставить плюс

(−4) × (−2) = |−4| × |−2| = 4 × 2 = 8

Плюс по традиции не записываем, поэтому просто записываем ответ 8.

Обычно записывают короче (−4) × (−2) = 8

Возникает вопрос почему при умножении отрицательных чисел вдруг получается положительное число. Давайте попробуем доказать, что (−4) × (−2) равно 8 и ни чему другому.

Сначала запишем следующее выражение:

Заключим его в скобки:

Прибавим к этому выражению наше выражение (−4) × (−2). Его тоже заключим в скобки:

Всё это приравняем к нулю:

( 4 × (−2) ) + ( (−4) × (−2) ) = 0

Теперь начинается самое интересное. Суть в том, что мы должны вычислить левую часть этого выражения, и в результате получить 0.

Итак, первое произведение ( 4 × (−2) ) равно −8. Запишем в нашем выражении число −8 вместо произведения ( 4 × (−2) )

Теперь вместо второго произведения временно поставим многоточие

Теперь внимательно смотрим на выражение −8 + […] = 0. Какое число должно стоять вместо многоточия, чтобы соблюдалось равенство? Ответ напрашивается сам. Вместо многоточия должно стоять положительное число 8 и никакое другое. Только так будет соблюдаться равенство. Ведь −8 + 8 равно 0.

Возвращаемся к выражению −8 + ((−4) × (−2)) = 0 и вместо произведения ((−4) × (−2)) записываем число 8

Пример 5. Найти значение выражения −2 × (6 + 4)

Применим распределительный закон умножения, то есть умножим число −2 на каждое слагаемое суммы (6 + 4)

−2 × (6 + 4) = ( −2 × 6) + ( −2 × 4)

Теперь вычислим выражения, находящиеся в скобках. Затем полученные результаты сложим. Попутно применим ранее изученные правила. Запись с модулями можно пропустить, чтобы не загромождать выражение

−2 × 6 = −(2 × 6) = −(12) = −12

−2 × 4 = −(2 × 4) = −(8) = −8

Третье действие:

Значит значение выражения −2 × (6 + 4) равно −20

Обычно записывают короче: −2 × (6 + 4) = (−12) + (−8) = −20

Пример 6. Найти значение выражения (−2) × (−3) × (−4)

Выражение состоит из нескольких сомножителей. Сначала перемножим числа −2 и −3, и полученное произведение умножим на оставшееся число −4. Запись с модулями пропустим, чтобы не загромождать выражение

Значит значение выражения (−2) × (−3) × (−4) равно −24

Обычно записывают короче: (−2) × (−3) × (−4) = 6 × (−4) = −24

Законы деления

Прежде чем делить целые числа, необходимо изучить два закона деления.

В первую очередь, вспомним из чего состоит деление. Деление состоит из трёх параметров: делимого, делителя и частного. Например, в выражении 8 : 2 = 4, 8 – это делимое, 2 – делитель, 4 – частное.

Делимое показывает, что именно мы делим. В нашем примере мы делим число 8.

Делитель показывает на сколько частей нужно разделить делимое. В нашем примере делитель это число 2. Этот делитель показывает на сколько частей нужно разделить делимое 8. То есть, в ходе операции деления, число 8 будет разделено на две части.

Частное – это собственно результат операции деления. В нашем примере частное это число 4. Это частное является результатом деления 8 на 2.

Далее рассмотрим законы деления.

На ноль делить нельзя

Любое число запрещено делить на ноль. Дело в том, что деление является обратной операцией умножению. Например, если 2 × 6 = 12, то 12 : 6 = 2

Видно, что второе выражение записано в обратном порядке.

Теперь сделаем тоже самое для выражения 5 × 0. Мы знаем из законов умножения, что произведение равно нулю, если хотя бы один из сомножителей равен нулю. Значит и выражение 5 × 0 равно нулю

Если записать это выражение в обратном порядке, то получим:

Сразу в глаза бросается ответ 5, который получается в результате деления ноль на ноль. Это невозможно и глупо.

В обратном порядке можно записать и другое похожее выражение, например 2 × 0 = 0

В первом случае, разделив ноль на ноль мы получили 5, а во втором случае 2. То есть, каждый раз деля ноль на ноль, мы можем получить разные значения, а это недопустимо.

Второе объяснение заключается в том, что разделить делимое на делитель означает найти такое число, которое при умножении на делитель даст делимое.

Например выражение 8 : 2 означает найти такое число, которое при умножении на 2 даст 8

Здесь вместо многоточия должно стоять число, которое при умножении на 2 даёт ответ 8. Чтобы найти это число, достаточно записать это выражение в обратном порядке:

Теперь представим, что нужно найти значение выражения 5 : 0. В данном случае 5 – это делимое, 0 – делитель. Разделить 5 на 0 означает найти такое число, которое при умножении на 0 даст 5

Здесь вместо многоточия должно стоять число, которое при умножении на 0 даёт ответ 5. Но не существует числа, которое при умножении на ноль даёт 5.

Выражение […] × 0 = 5 противоречит закону умножения на ноль, который утверждает, что произведение равно нулю, когда хотя бы один из сомножителей равен нулю.

А значит записывать выражение […] × 0 = 5 в обратном порядке, деля 5 на 0 нет никакого смысла. Поэтому и говорят, что на ноль делить нельзя.

С помощью переменных данный закон записывается следующим образом:

, при b ≠ 0

Это выражение можно прочитать так:

Число a можно разделить на число b, при условии, что b не равно нулю.

Свойство частного

Этот закон говорит о том, что если делимое и делитель умножить или разделить на одно и то же число, то частное не изменится.

Например, рассмотрим выражение 12 : 4. Значение этого выражения равно 3

Попробуем умножить делимое и делитель на одно и то же число, например на число 4. Если верить свойству частного, мы опять должны получить в ответе число 3

(12 × 4 ) : (4 × 4 )

(12 × 4 ) : (4 × 4 ) = 48 : 16 = 3

Получили ответ 3.

Теперь попробуем не умножить, а разделить делимое и делитель на число 4

(12 : 4 ) : (4 : 4 )

(12 : 4 ) : (4 : 4 ) = 3 : 1 = 3

Видим, что если делимое и делитель умножить или разделить на одно и то же число, то частное не меняется.

Мы рассмотрели два закона деления. Далее рассмотрим деление целых чисел.

Деление целых чисел

Пример 1. Найти значение выражения 12 : (−2)

Это деление чисел с разными знаками. 12 – это положительное число, (−2) – отрицательное. В таких случаях, нужно модуль делимого разделить на модуль делителя, и перед полученным ответом поставить знак минус.

12 : (−2) = −(|12| : |−2|) = −(12 : 2) = −(6) = −6

Обычно записывают короче 12 : (−2) = −6

Пример 2. Найти значение выражения −24 : 6

Это деление чисел с разными знаками. −24 – это отрицательное число, 6 – положительное. В таких случаях опять же нужно модуль делимого разделить на модуль делителя, и перед полученным ответом поставить знак минус.

−24 : 6 = −(|−24| : |6|) = −(24 : 6) = −(4) = −4

Обычно записывают короче −24 : 6 = −4

Пример 3. Найти значение выражения (−45) : (−5)

Это деление отрицательных чисел. В таких случаях, нужно модуль делимого разделить на модуль делителя, и перед полученным ответом поставить знак плюс.

(−45) : (−5) = |−45| : |−5| = 45 : 5 = 9

Обычно записывают короче (−45) : (−5) = 9

Пример 4. Найти значение выражения (−36) : (−4) : (−3)

Согласно порядку действий, если в выражении присутствует только умножение или деление, то все действия нужно выполнять слева направо в порядке их следования.

Разделим (−36) на (−4), и полученное число разделим на (−3)

(−36) : (−4) = |−36| : |−4| = 36 : 4 = 9

9 : (−3) = −(|−9| : |−3|) = −(9 : 3) = −(3) = −3

Обычно записывают короче (−36) : (−4) : (−3) = 9 : (−3) = −3

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Смотрите так же:

  • Размер минимальная пенсия в омске в 2018 году ЧТО ВАЖНО ЗНАТЬ О НОВОМ ЗАКОНОПРОЕКТЕ О ПЕНСИЯХ Подписка на новости Письмо для подтверждения подписки отправлено на указанный вами e-mail. 18 декабря 2017 Новый календарный и финансовый […]
  • Петерсон пособия для дошкольников Учебно-методический комплекс «Игралочка» Курс математического развития дошкольников «Игралочка» Л.Г. Петерсон, Е.Е. Кочемасова имеет 4 части и разработан для детей: Комплект «Игралочка» […]
  • Аренда автомобиля стаж 2 года Аренда Газели или Соболя Фургон без водителя Газель-Бизнес, 1 водитель + 2 пассажира. Кузов: 3 м.длина, 2 м. высота, бутка. Объем куб. 10,5. Двигатель: УМЗ-4216 (бензин), евро-4, 106,8 […]
  • Образец заявления на декретный отпуск по уходу за ребенком Образец заявления о предоставлении отпуска по уходу за ребенком В соответствии со ст. 256 Трудового кодекса по заявлению женщины ей предоставляется отпуск по уходу за ребенком до […]
  • Получить разрешение на оружие волгоград Получить разрешение на оружие волгоград ПОУ «Спортивно-техническая школа по стрелковым видам спорта ДОСААФ России Волгоградской области» проводит обучение по правилам безопасного […]
  • Пособие по уходу за ребенком до 3 лет за июль 2013 prednalog.ru Just another WordPress site Свежие записи Свежие комментарии admin к записи Покупка товаров у физического лица: бухгалтерский учет, документы, налоги admin к записи […]