Закон кука

Сила упругости. Закон Гука

Каждый из нас знает, что такое пружина . И мы знаем, что пружину можно удлинять или же, наоборот, укорачивать, если приложить к ней силу.

Поскольку для того, чтобы удлинить или укоротить пружину, требуется усилие, логично предположить, что пружина оказывает «сопротивление» при ее деформации (растяжении или же сжатии) — в ней возникает сила. Это сила упругости F у п р у г о с т и F_ <упругости>F у п р у г о с т и ​ .

Можно заметить, что чем больше мы пытаемся удлинить пружину (или чем больше укоротить ее), тем бОльшую силу приходится прикладывать к пружине. Тем большая сила упругости возникает в пружине.

Но пружины бывают разные. Некоторые легко поддаются деформации усилием человека. Некоторые — сложно. Так, например, не составляет труда сжать пружину детского пистолета на несколько сантиметров. Пружину же в амортизаторе машины сжать на те же несколько сантиметров намного сложнее. Должна существовать какая-то величина, которая отражала бы то, что пружины бывают разные. И такая величина есть: это k k k — коэффициент упругости (коэффициент жесткости, жесткость). Чем сложнее сжать пружину, тем больше k k k . То есть более жесткая пружина имеет бОльшую по величине жесткость k k k . Чем больше k k k — тем больше сила упругости, которая возникает в пружине.

Наши рассуждения о влиянии удлинения (укорочения) и жесткости пружины на силу упругости закреплены в законе Гука:

Однако закон Гука выполняется не всегда. Закон Гука справедлив только для пластичных деформаций. Это такие деформации, при которых тело полностью восстанавливает свою форму и размеры после исчезновения сил, деформирующих тело. Короче говоря, закон Гука будет выполняться и деформации будут пластичными в том случае, когда растянутая или сжатая пружинка вернет себе форму после того, как ее перестанут растягивать или сжимать. Если пружину растянуть слишком сильно, то она может так и остаться растянутой. Деформации, которым она подверглась, были непластичными, и закон Гука выполнялся не везде.

Задачи для самостоятельного решения: #сила упругости

lampa.io

ЗАКОН ГУКА

Научно-технический энциклопедический словарь .

Смотреть что такое «ЗАКОН ГУКА» в других словарях:

закон Гука — Закон, устанавливающий пропорциональность между напряжением и деформацией (см. elastic constant) [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN Hooke s law … Справочник технического переводчика

Закон Гука — – основной закон, устанавливающий в известных пределах прямолинейную зависимость между напряженным состоянием и деформацией упругого тела. [Большая советская энциклопедия. М.: Советская энциклопедия. 1969 1978.] Рубрика термина: Теория и… … Энциклопедия терминов, определений и пояснений строительных материалов

ЗАКОН ГУКА — закон, устанавливающий линейную зависимость между (см.) твёрдого тела и приложенным механическим напряжением. Согласно З. Г. сила упругости, возникающая при деформации тела, пропорциональна удлинению тела и направлена в сторону, противоположную… … Большая политехническая энциклопедия

Закон Гука — Механика сплошных сред … Википедия

закон Гука — [Hooke s law] упругая деформация материала прямо пропорциональна приложенному напряжению: εн = σ/Е (для одноосного растяжения) и γ = τ/G (для сдвига), где εн относительная продольная деформация (Δl/l); ΔТ относительный сдвиг; σ нормальное… … Энциклопедический словарь по металлургии

Закон Гука — Hooke s law Закон Гука. Обобщение, применимое ко всем твердым материалам, которое показывает, что напряжение прямо пропорционально деформации и выражается как Е = constant = σ/ε = Напряжение/деформация, где Е модуль упругости (Юнга). Постоянное… … Словарь металлургических терминов

закон Гука — Huko dėsnis statusas T sritis fizika atitikmenys: angl. Hooke’s law vok. Hookesches Gesetz, n rus. закон Гука, m pranc. loi de Hooke, f … Fizikos terminų žodynas

Закон Гука — основной закон теории упругости, выражающий линейную зависимость между напряжениями и малыми деформациями в упругой среде. Установлен P. Гуком (1635 1703) в 1660 г. При растяжении стержня длиной l его удлинение пропорционально растягивающей силе… … Концепции современного естествознания. Словарь основных терминов

закон гука для рiдини при всесторонньому стисненнi — закон Гука для жидкости при всестороннем сжатии Hooke’s law for liquid in all round compression Hookesches Gesetz für die Flüssigkeit bei allseitiger Kompressibilität – змiна об’єму рiдини V при всесторонньому стисненнi прямо пропорцiйна змiнi… … Гірничий енциклопедичний словник

обобщенный закон Гука — [generalized Hooke s law] устанавливает линейную связь между напряжениями и деформациями в любых направлениях, т.е. между каждым компонентом тензора напряжений и каждым компонентом тензора деформаций: εx = [σx μ(σy σz)]E; γxy = τxy/G; εy = [σy… … Энциклопедический словарь по металлургии

dic.academic.ru

Определение и формула закона Гука

Формулировка этого закона выглядит следующим образом: сила упругости, которая появляется в момент деформации тела, пропорциональна удлинению тела и направлена противоположно движению частиц этого тела относительно других частиц при деформации.

Математическая запись закона выглядит так:

Рис. 1. Формула закона Гука

где Fупр – соответственно сила упругости, x – удлинение тела (расстояние, на которое изменяется исходная длина тела), а k – коэффициент пропорциональности, называемый жесткостью тела. Сила измеряется в Ньютонах, а удлинение тела – в метрах.

Для раскрытия физического смысла жесткости, нужно в формулу для закона Гука подставить единицу, в которой измеряется удлинение – 1 м, заранее получив выражение для k.

Рис. 2. Формула жесткости тела

Эта формула показывает, что жесткость тела численно равна силе упругости, которая возникает в теле (пружине), когда оно деформируется на 1 м. Известно, что жесткость пружины зависит от ее формы, размера и материала, из которого произведено данное тело.

Сила упругости

Теперь, когда известно, какая формула выражает закон Гука, необходимо разобраться в его основной величине. Основной величиной является сила упругости. Она появляется в определенный момент, когда тело начинает деформироваться, например, когда пружина сжимается или растягивается. Она направлена в обратную сторону от силы тяжести. Когда сила упругости и сила тяжести, действующие на тело, становятся равными, опора и тело останавливаются.

Деформация – это необратимые изменения, происходящие с размерами тела и его формой. Они связанны с перемещением частиц относительно друг друга. Если человек сядет в мягкое кресло, то с креслом произойдет деформация, то есть изменятся его характеристики. Она бывает разных типов: изгиб, растяжение, сжатие, сдвиг, кручение.

Так как сила упругости относится по своему происхождению к электромагнитным силам, следует знать, что возникает она из-за того, что молекулы и атомы – наименьшие частицы, из которых состоят все тела, притягиваются друг другу и отталкиваются друг от друга. Если расстояние между частицами очень мало, значит, на них влияет сила отталкивания. Если же это расстояние увеличить, то на них будет действовать сила притяжения. Таким образом, разность сил притяжения и сил отталкивания проявляется в силах упругости.

Сила упругости включает в себя силу реакции опоры и вес тела. Сила реакции представляет особый интерес. Это такая сила, которая действует на тело, когда его кладут на какую-либо поверхность. Если же тело подвешено, то силу, действующую на него, называют, силой натяжения нити.

Особенности сил упругости

Как мы уже выяснили, сила упругости возникает при деформации, и направлена она на восстановление первоначальных форм и размеров строго перпендикулярно к деформируемой поверхности. У сил упругости также есть ряд особенностей.

  • они возникают во время деформации;
  • они появляются у двух деформируемых тел одновременно;
  • они находятся перпендикулярно поверхности, по отношению к которой тело деформируется.
  • они противоположны по направлению смещению частиц тела.

Применение закона на практике

Закон Гука применяется как в технических и высокотехнологичных устройствах, так и в самой природе. Например, силы упругости встречаются в часовых механизмах, в амортизаторах на транспорте, в канатах, резинках и даже в человеческих костях. Принцип закона Гука лежит в основе динамометра – прибора, с помощью которого измеряют силу.

Рис. 3. Динамометр

Что мы узнали?

Статья подробно знакомит учащихся с материалом о том, как формулируется обобщенный закон Гука, который изучают в 7 классе, и его основной величине – силе упругости.

obrazovaka.ru

Закон кука

§ 5. Виды деформаций, закон Гука

Из наличия упругих свойств твёрдых тел можем заключить, что между молекулами и атомами существуют как силы притяжения, так и силы отталкивания. Исследования показали, что эти силы сильно зависят от расстояния между молекулами.

Если две молекулы разместить так, чтобы расстояние между их центрами составило примерно два радиуса, то сумма сил притяжения и отталкивания равна нулю.

Теперь понятно, что даже если сила притяжения или отталкивания между парой молекул мала, то при деформации макроскопического тела таких пар сил возникнет колоссально много, и они дадут в сумме макроскопическую силу упругости, компенсирующую внешнюю силу.

Деформацией называют изменение формы и размеров тела под действием внешних сил.

Все деформации можно разделить на четыре вида: сжатия – растяжения, изгиб, сдвиг и кручение.

Деформация сжатия-растяжения.

Величина деформации так же характеризуется безразмерной величиной:

Примеров таких деформаций очень много: ножки стула, стола, стены зданий, некоторые кости скелета, мачта парусника во время штиля и др.

Робертом Гуком экспериментально было установлено, что:

Сила упругости, возникающая при деформации, прямо пропорциональна смещению частиц и направлена в сторону, противоположную смещению частиц при деформации.

Закон Гука стал средством для измерения сил. Т. к. чтобы определить величину (модуль) какой — либо силы, необходимо сравнить её с эталоном. Две силы считаются равными по модулю и противоположно направленными, если при их одновременном действии на одно и то же тело его общее ускорение равно нулю (скорость тела не изменяется). Таким образом, можно сравнивать силы и измерять их (если одну из них выбрать в качестве эталона).

На практике пружину, подчиняющуюся закону Гука, градуируют на разные значения силы для измерения силы. Далее воздействуют ею на тело так, чтобы тело стало двигаться равномерно. В этом состоянии сила, ранее действовавшая на тело, стано вится равной силе, действующей со стороны пружины, определяемой по граду и рованной шкале. Прибор для измерения силы называется динамометром.

zftsh.online

Закон Гука

Представьте, что вы взялись за один конец упругой пружины, другой конец которой закреплен неподвижно, и принялись ее растягивать или сжимать. Чем больше вы сдавливаете пружину или растягиваете ее, тем сильнее она этому сопротивляется. Именно по такому принципу устроены любые пружинные весы — будь то безмен (в нем пружина растягивается) или платформенные пружинные весы (пружина сжимается). В любом случае пружина противодействует деформации под воздействием веса груза, и сила гравитационного притяжения взвешиваемой массы к Земле уравновешивается силой упругости пружины. Благодаря этому мы можем измерять массу взвешиваемого объекта по отклонению конца пружины от ее нормального положения.

Первое по-настоящему научное исследование процесса упругого растяжения и сжатия вещества предпринял Роберт Гук. Первоначально в своем опыте он использовал даже не пружину, а струну, измеряя, насколько она удлиняется под воздействием различных сил, приложенных к одному ее концу, в то время как другой конец жестко закреплен. Ему удалось выяснить, что до определенного предела струна растягивается строго пропорционально величине приложенной силы, пока не достигает предела упругого растяжения (эластичности) и не начинает подвергаться необратимой нелинейной деформации (см. ниже). В виде уравнения закон Гука записывается в следующей форме:

где F — сила упругого сопротивления струны, x — линейное растяжение или сжатие, а k — так называемый коэффициент упругости. Чем выше k, тем жестче струна и тем тяжелее она поддается растяжению или сжатию. Знак минус в формуле указывает на то, что струна противодействует деформации: при растяжении стремится укоротиться, а при сжатии — распрямиться.

Закон Гука лег в основу раздела механики, который называется теорией упругости. Выяснилось, что он имеет гораздо более широкие применения, поскольку атомы в твердом теле ведут себя так, будто соединены между собой струнами, то есть упруго закреплены в объемной кристаллической решетке. Таким образом, при незначительной упругой деформации эластичного материала действующие силы также описываются законом Гука, но в несколько более сложной форме. В теории упругости закон Гука принимает следующий вид:

где σмеханическое напряжение (удельная сила, приложенная к поперечной площади сечения тела), η — относительное удлинение или сжатие струны, а Е — так называемый модуль Юнга, или модуль упругости, играющий ту же роль, что коэффициент упругости k. Он зависит от свойств материала и определяет, насколько растянется или сожмется тело при упругой деформации под воздействием единичного механического напряжения.

Вообще-то, Томас Юнг гораздо более известен в науке как один из сторонников теории волновой природы света, разработавший убедительный опыт с расщеплением светового луча на два пучка для ее подтверждения (см. Принцип дополнительности и Интерференция), после чего сомнений в верности волновой теории света ни у кого не осталось (хотя до конца облечь свои идеи в строгую математическую форму Юнг так и не сумел). Вообще говоря, модуль Юнга представляет собой одну из трех величин, позволяющих описать реакцию твердого материала на приложенную к нему внешнюю силу. Вторая — это модуль смещения (описывает, насколько вещество смещается под воздействием силы, приложенной по касательной к поверхности), а третья — соотношение Пуассона (описывает, насколько твердое тело истончается при растяжении). Последнее названо в честь французского математика Симеона Дени Пуассона (Siméon-Denis Poisson, 1781–1840) .

Конечно, закон Гука даже в усовершенствованной Юнгом форме не описывает всего, что происходит с твердым веществом под воздействием внешних сил. Представьте себе резиновую ленту. Если растянуть ее не слишком сильно, со стороны резиновой ленты возникнет возвратная сила упругого натяжения, и как только вы ее отпустите, она тут же соберется и примет прежнюю форму. Если растягивать резиновую ленту и дальше, то рано или поздно она утратит свою эластичность, и вы почувствуете, что сила сопротивления растяжению ослабла. Значит, вы перешли так называемый предел эластичности материала. Если тянуть резину и дальше, через какое-то время она вообще порвется, и сопротивление исчезнет полностью — это вы перешли через так называемую точку разрыва.

Иными словами, закон Гука действует только при относительно небольших сжатиях или растяжениях. Пока вещество сохраняет свои упругие свойства, силы деформации прямо пропорциональны ее величине, и вы имеете дело с линейной системой — каждому равному приращению приложенной силы соответствует равное приращение деформации. Стоит перетянуть резину за предел эластичности, и межатомные связи-пружины внутри вещества сначала ослабевают, а затем рвутся — и простое линейное уравнение Гука перестает описывать происходящее. В таком случае принято говорить, что система стала нелинейной. Сегодня исследование нелинейных систем и процессов является одним из основных направлений развития физики.

Английский физик. Родился во Фрешуотере (Freshwater) на острове Уайт в семье священника, окончил Оксфордский университет. Еще учась в университете, работал ассистентом в лаборатории Роберта Бойля, помогая последнему строить вакуумный насос для установки, на которой был открыт закон Бойля—Мариотта. Будучи современником Исаака Ньютона, вместе с ним активно участвовал в работе Королевского общества, а в 1677 году занял там пост ученого секретаря. Как и многие другие ученые того времени, Роберт Гук интересовался самыми разными областями естественных наук и внес вклад в развитие многих из них. В своей монографии «Микрография» (Micrographia) он опубликовал множество зарисовок микроскопического строения живых тканей и других биологических образцов и впервые ввел современное понятие «живая клетка». В геологии он первым осознал важность геологических пластов и первым в истории занялся научным изучением природных катаклизмов (см. Униформизм). Он же одним из первых высказал гипотезу, что сила гравитационного притяжения между телами убывает пропорционально квадрату расстояния между ними, а это ключевой компонент Закона всемирного тяготения Ньютона, и двое соотечественников и современников так до конца жизни и оспаривали друг у друга право называться его первооткрывателем. Наконец, Гук разработал и собственноручно построил целый ряд важных научно-измерительных приборов — и многие склонны видеть в этом его главный вклад в развитие науки. Он, в частности, первым додумался помещать перекрестье из двух тонких нитей в окуляр микроскопа, первым предложил принять температуру замерзания воды за ноль температурной шкалы, а также изобрел универсальный шарнир (карданное сочленение).

elementy.ru

Смотрите так же:

  • Собственные полномочия субъекта Единоличный исполнительный орган юридического лица: функции и полномочия Устав ООО, образец которого считается типовым для всех организаций, содержит ключевые положения, касающиеся […]
  • Налог на капитальный ремонт жилья 2018 москва официальный сайт Плата за капитальный ремонт многоквартирного дома в 2018 году Налог, целью которого, по словам чиновников, стала оплата капремонта жилых зданий, является очередной регулярной пошлиной. […]
  • Что делать с решением суда на алименты Исполнительный лист на алименты: особенности получения Исполнительный лист – это официальный документ. Он выдается судом на основании вынесенного им решения, приговора, другого судебного […]
  • Договор дарения земельного участка между родственниками налоги Дарственная на земельный участок: порядок оформления Составление дарственных в отношении земель, является наиболее простым и выгодным способом передачи прав одного владельца другому. Чаще […]
  • Приказ 185 гибдд 10 причин остановки Обзор 185 приказа ГИБДД Внимание! С 23 августа 2017 года 185 приказ ГИБДД утратил силу. Вместо него сейчас действует: Приказ МВД России от 23 августа 2017 г. N 664 «Об утверждении […]
  • Штраф браконьерство Рыба рыбец: описание, развитие, интересные факты и среда обитания Флора и фауна нашего земного шара поражает красотой и уникальностью. В водоемах проживает большое количество рыб, о […]